Source List

  • Gabi Ben-Dor

Abstract

In the following a comprehensive list of papers and reports dealing with the various aspects of shock wave reflection phenomenon is given.

Keywords

Shock Wave Shock Tube Blast Wave Oblique Shock Weak Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

Scientific Journals

  1. Adachi, T., Kobayashi, S. & Suzuki, T., “An Analysis of the Reflected Shock Wave Structure over a Wedge with Surface Roughness”, Dyn. Image Anal., Vol. 1, pp. 30–37, 1988.Google Scholar
  2. Adachi, T., Kobayashi, S. & Suzuki, T., “Reflection of Plane Shock Waves over a Dust Layer — The Effects of Permeability”, Theor. & Appl. Mech., Vol. 37, pp. 23–30, 1989.Google Scholar
  3. Adachi, T., Kobayashi, S. & Suzuki, T., “An Experimental Study of Reflected Shock Wave Structure over a Wedge with Surface Roughness”, Trans. Japan Soc. Mech. Eng., Vol. B56, pp. 1244–1249, 1990.Google Scholar
  4. Adachi, T., Kobayashi, S. & Suzuki, T., “Unsteady Behavior of Mach Reflection of a Plane Shock Wave over a Wedge with Surface Roughness”, Theor. & Appl. Mech., Vol. 39, pp. 285–291, 1990.Google Scholar
  5. Adachi, T., Suzuki, T. & Kobayashi, S., “Unsteady Oblique Reflection of a Plane Shock Wave over a Wedge with Surface Roughness”, Dyn. Image Anal., Vol. 2, pp. 31–36, 1990.Google Scholar
  6. Arutyunyan, G. M., “On Interaction of Shock Waves with a Wedge”, Dokl. Akad. Nauk Arm. SSSR, Vol. 46, pp. 160–167, 1968.Google Scholar
  7. Arutyunyan, G. M., “On Diffraction of Shock Waves”, Prikl. Mat. & Mekh., Vol. 34, pp. 693–699, 1970.Google Scholar
  8. Arutyunyan, G. M., “Theory of Anomalous Regimes in the Regular Reflection of Shock Waves”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 5, pp. 117–125, 1973.Google Scholar
  9. Arutyunyan, G. M„ Belokon, V. A. & Karchevsky, L. V., “Effect of Adiabatic Index on Reflection of Shocks”, Zh. Prikl. Mekh. i Teor. Fiz., Vol. 4, 62–66, 1970.Google Scholar
  10. Arutyunyan, G. M. & Karchevsky, L. F., Reflected Shock Waves, Mashinostroyeniye Press, Moscow, SSSR, 1975.Google Scholar
  11. Auld, D. J. & Bird, G. A., “Monte Carlo Simulation of Regular and Mach Reflection”, AIAA J., Vol. 15, pp. 638–641,1977.ADSCrossRefGoogle Scholar
  12. Bazhanov, K. A., “The Regular Case of Shock Wave Diffraction on a Wedge Partially Submerged in Fluid”, Appl. Math. & Mech., Vol. 46, pp. 628–634, 1982.Google Scholar
  13. Bazhenova, T. V., Fokeev, V. P. & Gvozdeva, L. G., “Regions of Various Forms of Mach Reflection and Its Transition to Regular Reflection”, Acta Astro., Vol. 3, pp. 131–140, 1976.ADSCrossRefGoogle Scholar
  14. Bazhenova, T. V., Fokeev, V.P. & Gvozdeva, L.G., “Reply to the Comments of C. K. Law & I. I. Glass”, Acta Astro., Vol. 4, pp. 943–944, 1977.CrossRefGoogle Scholar
  15. Bazhenova, T. V. & Gvozdeva, L. G., Unsteady Interactions of Shock Waves, Nauka, Moscow, SSSR, 1977.Google Scholar
  16. Bazhenova, T. V. & Gvozdeva, L. G., “The Reflection and Diffraction of Shock Waves”, Fluid Dyn. Trans., Vol. 11, pp. 7–16, 1983.Google Scholar
  17. Bazhenova, T. V., Gvozdeva, L. G., Komarov, V. S. & Sukhov, B. G., “Pressure and Temperature Change on the Wall Surface in Strong Shock Wave Diffraction”, Astro. Acta, Vol. 17, pp. 559–566, 1972.Google Scholar
  18. Bazhenova, T. V., Gvozdeva, L. G., Komarov, V. S. & Sukhov, B. G., “Diffraction of Strong Shock Waves by Convex Corners”, Izv. Akad. Nuak SSSR, Mekh. Zh. Gaza, Vol. 4, pp. 122–134, 1973.Google Scholar
  19. Bazhenova, T. V., Gvozdeva, L. G. & Nettleton, M. A., “Unsteady Interactions of Shock Waves”, Prog. Aero. Sei., Vol. 21, pp. 249–331, 1984.CrossRefGoogle Scholar
  20. Bazhenova, T. V., Gvozdeva, L. G. & Zhilin, Yu. V., “Change in the Shape of a Diffracting Shock Wave at a Convex Corner”, Acta Astro., Vol. 6, pp. 401–412, 1979.ADSCrossRefGoogle Scholar
  21. Ben-Dor, G., “A Reconsideration of the Shock Polar Solution of a Pseudo-Steady Single-Mach Reflection”, CASI Trans., Vol. 26, pp. 98–104, 1980.Google Scholar
  22. Ben-Dor, G., “Analytical Solution of Double-Mach Reflection”, AIAA J., Vol. 18, pp. 1036–1043, 1980.MathSciNetADSMATHCrossRefGoogle Scholar
  23. Ben-Dor, G., “Steady Oblique Shock Wave Reflections in Perfect and Imperfect Monatomic and Diatomic Gases”, AIAA J., Vol. 18, pp. 1143–1145, 1980.MathSciNetADSCrossRefGoogle Scholar
  24. Ben-Dor, G., “Relation Between First and Second Triple Point Trajectory Angles in Double-Mach Reflection”, AIAA J., Vol. 19, pp. 531–533, 1981.ADSCrossRefGoogle Scholar
  25. Ben-Dor, G., “A Reconsideration of the Three-Shock Theory of a Pseudo-Steady Mach Reflection”, J. Fluid Mech., Vol. 181, pp. 467–484, 1987.ADSMATHCrossRefGoogle Scholar
  26. Ben-Dor, G., “Steady, Pseudo-Steady and Unsteady Shock Wave Reflections”, Prog. Aero. Sci., Vol. 25, pp. 329–412, 1988.CrossRefGoogle Scholar
  27. Ben-Dor, G., “Structure of the Contact Discontinuity of Nonstationary Mach Reflections”, AIAA J., Vol. 28, pp. 1314–1316, 1990.ADSCrossRefGoogle Scholar
  28. Ben-Dor, G., “Interaction of a Planar Shock Wave with a Double Wedge-Like Structure”, AIAA J., Vol. unavailable, pp. unavailable, 1991.Google Scholar
  29. Ben-Dor, G. & Dewey, J.M., “The Mach Reflection Phenomenon A Suggestion for an International Nomenclature,” AIAA J., Vol. 23, pp. 1650–1652, 1985.ADSCrossRefGoogle Scholar
  30. Ben-Dor, G., Dewey, J. M., McMillin, D. J. & Takayama, K., “Experimental Investigation of the Asymptotically Approached Mach Reflection over the Second Surface in a Reflection over a Double Wedge”, Exp. in Fluids, Vol. 6, pp. 429–434, 1988.ADSCrossRefGoogle Scholar
  31. Ben-Dor, G., Dewey, J. M. & Takayama, K., “The Reflection of a Planar Shock Wave over a Double Wedge”, J. Fluid Mech., Vol. 176, pp. 483–520, 1987.ADSCrossRefGoogle Scholar
  32. Ben-Dor, G. & Glass, I. I., “Nonstationary Oblique Shock Wave Reflections: Actual Isopycnics and Numerical Experiments”, AIAA J., Vol. 16, pp. 1146–1153, 1978.ADSCrossRefGoogle Scholar
  33. Ben-Dor, G. & Glass, I. I., “Domains and Boundaries of Nonstationary Oblique Shock Wave Reflections: 1. Diatomic Gas”, J. Fluid Mech., Vol. 92, pp. 459–496, 1979.ADSCrossRefGoogle Scholar
  34. Ben-Dor, G. & Glass, I. I., “Domains and Boundaries of Nonstationary Oblique Shock Wave Reflections:2. Monatomic Gas”, J. Fluid Mech. Vol. 96, pp. 735–756, 1980.ADSCrossRefGoogle Scholar
  35. Ben-Dor, G., Mazor, G., Takayama, K. & Igra, O., “The Influence of Surface Roughness on the Transition from Regular to Mach Reflection in a Pseudo Steady Flow”, J. Fluid Mech., Vol. 176, pp. 333–356, 1987.ADSCrossRefGoogle Scholar
  36. Ben-Dor, G. & Takayama, K., “Analytical Prediction of the Transition from Mach to Regular Reflection over Cylindrical Concave Wedges”, J. Fluid Mech., Vol. 158, pp. 365–380, 1985.ADSCrossRefGoogle Scholar
  37. Ben-Dor, G. & Takayama, K., “Application of Steady Shock Polars to Unsteady Shock Wave Reflections,” AIAA J., Vol. 24, pp. 682–684, 1986.ADSCrossRefGoogle Scholar
  38. Ben-Dor, G. & Takayama, K., “The Dynamics of the Transition from Mach to Regular Reflection over Concave Cylinders”, Israel J. Tech., Vol. 23, pp. 71–74, 1986/7.Google Scholar
  39. Ben-Dor, G. & Takayama, K., “The Reflection of a Planar Shock Wave over a Water Wedge”, Israel J. Tech., Vol. 23, pp. 169–173, 1986/7.Google Scholar
  40. Ben-Dor, G. & Takayama, K., “Streak Camera Photography with Curved Slits for the Precise Determination of Shock Wave Transition Phenomena”, CASI J., Vol. 27, pp. 128–134, 1981.ADSGoogle Scholar
  41. Ben-Dor, G., Takayama, K. & Dewey, J. M., “Further Analytical Considerations of the Reflection of a Weak Shock Wave over a Concave Wedge”, Fluid Dyn. Research, Vol. 2, pp. 77–85, 1987.ADSCrossRefGoogle Scholar
  42. Ben-Dor, G., Takayama, K. & Kawauchi, T., “The Transition from Regular to Mach Reflection and from Mach to Regular Reflection in Truly Nonstationary Flows”, J. Fluid Mech. Vol. 100, pp. 147–160, 1980.ADSCrossRefGoogle Scholar
  43. Ben-Dor, G., Takayama, K. & Needham, C. E., “The Thermal Nature of the Triple Point of a Mach Reflection”, Phys. Fluids, Vol. 30, pp. 1287–1293, 1987.ADSCrossRefGoogle Scholar
  44. Berezkina, M. K., Syshchikova, M. P. & Semenov, A. N., “Interaction of Two Consecutive Shock Waves with a Wedge”, Sov. Phys. Tech. Phys., Vol. 27, pp. 835–841, 1982.Google Scholar
  45. Beryozkina, M. K., Syshchikova, M. P., Semenov, A. N. & Krassovskaya, I. V., “Some Properties of the Nonstationary Interaction of Two Shock Waves with a Wedge”, Arch. Mech., Vol. 32, pp. 621–631, 1980.Google Scholar
  46. Beryozkina, M. K., Syshchikova, M. P. & Semenov, A. N., “Interaction of Two Successive Shock Waves with a Wedge”, Zh. Tekh. Fiz., Vol. 52, pp. 1375–1385, 1982.Google Scholar
  47. Bleakney, W., Fletcher, C.H. & Weimer, D.K., “The Density Field in Mach Reflection of Shock Waves”, Phys. Rev. 76, 323–324, 1949.ADSCrossRefGoogle Scholar
  48. Bleakney, W. & Taub, A. H. “Interaction of Shock Waves”, Rev. Mod. Phys., Vol. 21, pp.584–605, 1949.MathSciNetADSMATHCrossRefGoogle Scholar
  49. Bleakney, W., White, D. R. & Griffith, W. C., “Measurement of Diffraction of Shock Waves and Resulting Loading of Structure”, J. Appl. Mech., Vol. 17, pp. 439–445, 1950.Google Scholar
  50. Bogatko, V. I. & Kolton, G. A., “On Regular Reflection of Strong Shock Waves by a Thin Wedge”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 5, pp. 55–61, 1974.ADSGoogle Scholar
  51. Bogatko, V. I. & Kolton, G. A., “Regular Reflection of a Strong Shock Wave by the Surface of a Wedge”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 2, pp. 92–96, 1983.MathSciNetGoogle Scholar
  52. Bryson, A. E. & Gross, R. F. W., “Diffraction of Strong Shocks by Cones, Cylinders and Spheres”, J. Fluid Mech., Vol. 10, pp. 1–16, 1961.MathSciNetADSMATHCrossRefGoogle Scholar
  53. Buggisch, H., “The Steady Two-Dimensional Reflection of an Oblique Partly Dispersed Shock Wave from a Plane Wall”, J. Fluid Mech., Vol. 61, pp. 159–172, 1973.ADSMATHCrossRefGoogle Scholar
  54. Chang, K. S. & Kim, S. W., “Reflection of Shock Wave from a Compression Corner in the Particulate Laden Gas Region”, Shock Waves, Vol. 1, pp. 65–74, 1991.ADSMATHCrossRefGoogle Scholar
  55. Chang, T.S. & Laporte, O., “Reflection of Strong Blast Waves”, Phys. Fluids, Vol. 7, pp. 1225–1232, 1964.MathSciNetADSMATHCrossRefGoogle Scholar
  56. Chester, W., “The Diffraction and Reflection of Shock Waves”, Quart. J. Mech. & Appl. Math., Vol. 7, pp. 57–82, 1954.MathSciNetMATHCrossRefGoogle Scholar
  57. Chopra, M. G., “Diffraction and Reflection of Shock from Corners”, AIAA J., Vol. 11, pp. 1452–1453, 1973.ADSCrossRefGoogle Scholar
  58. Clarke, J. F., “Regular Reflection of a Weak Shock Wave from a Rigid Porous Wall”, Quar. J. Mech. & Appl. Math., Vol. 37, pp. 87–111, 1984.MATHCrossRefGoogle Scholar
  59. Clarke, J. F., “Reflection of a Weak Shock Wave From a Perforated Plug”, J. Eng. Math., Vol. 18, pp. 335–350, 1984.CrossRefGoogle Scholar
  60. Clarke, J. F., “The Reflection of Weak Shock Waves from Absorbent Surfaces”, Proc. Roy. Soc. Lond., Ser. A, Vol. 396, pp. 365–382, 1984.ADSMATHCrossRefGoogle Scholar
  61. Colella, P. & Henderson, L.F., “The von-Neumann Paradox for the Diffraction of Weak Shock Waves”, J. Fluid Mech., Vol. 213, pp. 71–94, 1990.MathSciNetADSCrossRefGoogle Scholar
  62. Courant, R. & Friedrichs, K. O., Supersonic Flow and Shock Waves , Wiley Interscience, New York, U.S.A., 1948.MATHGoogle Scholar
  63. Deschambault, R. L. & Glass I. L, “An Update on Non-Stationary Oblique Shock Wave Reflections. Actual Isopycnics and Numerical Experiments”, J. Fluid Mech., Vol. 131, pp. 27–57, 1983.ADSCrossRefGoogle Scholar
  64. Davis, J. L., “On the Nonexistence of Four Confluent Shock Waves”, J. Aero. Sci., Vol. 20, pp. 501–502, 1953.Google Scholar
  65. Dewey, J. M., “The Mach Reflection of Spherical Blast Waves”, Nucl. Eng. & Des., Vol. 55, pp. 363–373, 1979.CrossRefGoogle Scholar
  66. Dewey, J. M. & McMillin, D. J., “An Analysis of the Particle Trajectories in Spherical Blast Waves Reflected from Real and Ideal Surfaces”, Canadian J. Phys., Vol. 59, pp. 1380–1390, 1981.ADSCrossRefGoogle Scholar
  67. Dewey, J. M. & McMillin D. J., “Observation and Analysis of the Mach Reflection of Weak Uniform Plane Shock Waves. Part 1. Observations”, J. Fluid Mech., Vol. 152, pp. 49–66, 1985.ADSCrossRefGoogle Scholar
  68. Dewey, J. M. & McMillin D. J., “Observation and Analysis of the Mach Reflection of Weak Uniform Plane Shock Waves. Part 2. Analysis”, J. Fluid Mech., Vol. 152, pp. 67–81, 1985.ADSCrossRefGoogle Scholar
  69. Dewey, J. M., McMillin, D. J. & Classen, D. F., “Photogrammetry of Spherical Shocks Reflected from Real and Ideal Surfaces”, J. Fluid Mech., Vol. 81, pp. 701–717, 1977.ADSCrossRefGoogle Scholar
  70. Dewey, J. M. & Walker, D. K., “A Multiply Pulsed Double-Pass Laser Schlieren System for Recording the Movement of Shocks and Particle Tracers within a Shock Tube”, J. Appl. Phys., Vol. 46, pp. 3454–3458, 1975.ADSCrossRefGoogle Scholar
  71. Dunayev, Yu. A., Syschikova, M. P., Berezkina, M. K. & Semenov, A. N., “The Interaction of a Shock Wave with a Body in the Presence of Ionization Relaxations”, Acta Astro., Vol. 14, 491–495, 1969.Google Scholar
  72. Dunne, B. B., “Mach Reflection of 700-kbar Shock Waves in Gases”, Physics Fluids, Vol. 4, pp. 1565–1566, 1961.ADSCrossRefGoogle Scholar
  73. Dunne, B. B., “Mach Reflection of Detonation Waves in Condensed High Explosives”, Phys. Fluids, Vol. 4, pp. 918–924, 1961.ADSCrossRefGoogle Scholar
  74. Dunne, B. B., “Mach Reflection of Detonation Waves in Condensed High Explosives. II”, Phys. Fluids, Vol. 7, pp. 1707–1712, 1964.ADSCrossRefGoogle Scholar
  75. Duong, D. Q. & Milton, B. E., “The Mach Reflection of Shock Waves in Converging Cylindrical Channels”, Exp. in Fluids, Vol. 3, pp. 161–168, 1985.ADSCrossRefGoogle Scholar
  76. Fletcher, C. H., Taub, A. H. & Bleakney, W., “The Mach Reflection of Shock Waves at Nearly Glancing Incidence”, Rev. Mod. Phys., Vol. 23, pp. 271–286, 1951.MathSciNetADSMATHCrossRefGoogle Scholar
  77. Fletcher, C. H., Weimer, D. K. & Bleakney, W., “Pressure Behind a Shock Wave Diffracted Through a Small Angle”, Phys. Rev., Vol. 78, pp. 634–635, 1950.ADSCrossRefGoogle Scholar
  78. Ginzberg, I. P. & Markov, Yu. S., “Experimental Investigation of the Reflection of a Shock Wave from a Two-Facet Wedge”, Fluid Mech.-Sov. Res., Vol. 4, pp. 167–172, 1975.Google Scholar
  79. Glass, I.I., “Present Status of Oblique-Shock-Wave Reflections”, Physicochemical Hydrodynamics, Vol. 6, pp. 863–864, 1985.Google Scholar
  80. Glass, I. I., “Some Aspects of Shock-Wave Reseaech”, AIAA J., Vol. 25, pp. 214–229, 1987.ADSCrossRefGoogle Scholar
  81. Glass, I. I., “Over Forty Years of Continuous Research at UTIAS on Nonstationary Flows and Shock Waves”, Shock Waves, Vol. 1, pp. 75–86, 1991.ADSCrossRefGoogle Scholar
  82. Glass, I.I. & Heuckroth, L. G., “Head-On Collision of Spherical Shock Waves”, Phys. Fluids, Vol. 2, pp. 542–546, 1959.ADSMATHCrossRefGoogle Scholar
  83. Glaz, H. M., Colella, P., Collins, J. P. & Ferguson, R. E., “Nonequilibrium Effects in Oblique Shock Wave Reflection”, AIAA J., Vol. 26, pp. 698–705, 1988.ADSCrossRefGoogle Scholar
  84. Glaz, H. M., Colella, P., Glass, I. I. & Deschambault, R. L., “A Numerical Study of Oblique Shock-Wave Reflections with Experimental Comparisoms”, Proc. Roy. Soc. Lond., Ser. A, Vol. 398, pp. 117–140, 1985.ADSCrossRefGoogle Scholar
  85. Griffith, W. C, “Shock Waves”, J. Fluid Mech., Vol. 106, pp. 81–101, 1981.ADSMATHCrossRefGoogle Scholar
  86. Griffith, W. C. & Bleakney, W., “Shock Waves in Gases”, Amer. J. Phys., Vol. 22, pp. 597–612, 1954.ADSCrossRefGoogle Scholar
  87. Griffith, W. C. & Brickie, D. E., “The Diffraction of Strong Shock Waves”, Phys. Rev., Vol. 89, pp. 451–453, 1953.ADSCrossRefGoogle Scholar
  88. Grudnitskii, V. G. & Prokhorchuk, Yu. A., “Analysis of the Diffraction of a Shock Wave at a Curvilinear Surface”, J. Num. Anal. & Math. Phys., Vol. 15, pp. 1525–1534, 1975.Google Scholar
  89. Gvozdeva, L. G., Bazhenova, T. V., Lagutov, Yu. P. & Fokeev, V. P., “Shock Wave Interaction with Cylindrical Surfaces”, Arch. Mech., Vol. 32, pp. 693–702, 1980.Google Scholar
  90. Gvozdeva, L. G., Bazhenova, T. V., Predvoditeleva, O. A. & Fokeev, V. P., “Mach Reflection of Shock Waves in Real Gases”, Astro. Acta, Vol. 14, pp. 503–508, 1969.Google Scholar
  91. Gvozdeva, L. G. Bazhenova, T. V., Predvoditeleva, O. A. & Fokeev, V. P., “Pressure and Temperature at the Wedge Surface for Mach Reflection of Strong Shock Waves”, Astro. Acta, Vol. 15, pp. 503–510, 1970.Google Scholar
  92. Gvozdeva, L. G. & Fokeev, V. P., “Experimental Study of Irregular Shock Wave Reflection from the Surface of a Wedge”, Fiz. Gorenia i Vzryva, Vol. 12, pp. 260–269, 1976.ADSGoogle Scholar
  93. Gvozdeva, L. G. & Fokeev, V. P., “Transition from Mach to Regular Reflection and Domains of Various Mach Reflection Configurations”, Comb. Exp. & Shock Waves, Vol. 13, pp. 86–93, 1977.CrossRefGoogle Scholar
  94. Gvozdeva, L. G., Lagutov, Yu. P. & Fokeev, V. P., “Transition from Regular Reflection to Mach Reflection in the Interaction of Shock Waves with a Cylindrical Surface”, Sov. Tech. Phys. Lett., Vol. 5, pp. 334–336, 1979.Google Scholar
  95. Gvozdeva, L. G., Lagutov, Yu. P. & Fokeev, V. P., “Transition from Mach Reflection to Regular Reflection when Strong Shock Waves Interact with Cylindrical Surfaces”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 2, pp. 132–138, 1982.ADSGoogle Scholar
  96. Gvozdeva, L. G. & Predvoditeleva, O. A., “Experimental Investigation of Mach Reflection of Shock Waves with Velocities of 1000–3000 m/sec in Carbon Dioxide Gas, Nitrogen and Air”, Sov. Phys. Dokl., Vol. 10, pp. 694–697, 1965.ADSGoogle Scholar
  97. Gvozdeva, L. G., Predvoditeleva, O. A. & Fokeev, V. P., “Double Mach Reflection of Strong Shock Waves”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 14, pp. 112–119,1968.Google Scholar
  98. Gvozdeva, L. G., Predvoditeleva, O. A., “A Study of Triple Configuration of Detonation Waves in Gases”, Comb. Exp. & Shock Waves, Vol. 4, pp. 451–461, 1969.Google Scholar
  99. Handke, E. & Obermeier, F., “Theoretical Results from the Mach Reflection of Weak Shock Waves”, Z. Angew. Math. & Mech., Vol. 65, pp. 202–204, 1985.Google Scholar
  100. Heilig, W. H., “Diffraction of Shock Wave by a Cylinder”, Phys. Fluids Supll. I, Vol. 12, pp. 154–157, 1969.ADSGoogle Scholar
  101. Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas”, Aero. Quart., Vol. 15, pp. 181–197, 1964.Google Scholar
  102. Henderson, L. F., “The Three Shock Confluence on a Simple Wedge Intake”, Aero. Quart., Vol. 16, pp. 42–54, 1965.Google Scholar
  103. Henderson, L. F., “The Reflection of a Shock Wave at a Rigid Wall in the Presence of a Boundary Layer”, J. Fluid Mech., Vol. 30, pp. 699–723, 1967.ADSMATHCrossRefGoogle Scholar
  104. Henderson, L. F., “On the Whitham Theory of Shock Wave Diffraction at Concave Corners”, J. Fluid Mech., Vol. 99, pp. 801–811, 1980.ADSCrossRefGoogle Scholar
  105. Henderson, L. F., “Exact Expressions for Shock Reflection Transition Criteria in a Perfect Gas”, Z. Ang. Math. & Mech., Vol. 62, pp. 258–261, 1982.MATHCrossRefGoogle Scholar
  106. Henderson, L. F., “Regions and Boundaries for Diffracting Shock Wave Systems”, Z. Ang. Math. & Mech., Vol. 67, pp. 1–14, 1987.CrossRefGoogle Scholar
  107. Henderson, L. F. & Gray, P. M., “Experiments on the Diffraction of Strong Blast Waves”, Proc. Roy. Soc. Lond., Ser. A, Vol. 377, pp. 363–378, 1981.ADSCrossRefGoogle Scholar
  108. Henderson, L. F. & Lozzi, A., “Experiments on Transition of Mach Reflection”, J. Fluid Mech., Vol. 68, pp. 139–155, 1975.ADSCrossRefGoogle Scholar
  109. Henderson, L. F. & Lozzi, A., “Further Experiments on Transition to Mach Reflection”, J. Fluid Mech., Vol. 94, pp. 541–559, 1979.ADSCrossRefGoogle Scholar
  110. Henderson, L.F., Ma, J-H, Sakurai, A. & Takayama, K., “Refraction of a Shock Wave at an Air-Water Interface”, Fluid Dyn. Res., Vol. 5, pp. 337–350, 1990.ADSCrossRefGoogle Scholar
  111. Henderson, L. F. & Siegenthaler, A., “Experiments on the Diffraction of Weak Blast Waves: The von Neumann Paradox”, Proc. Roy. Soc. Lond., Ser, A, Vol. 369, pp. 537–555, 1980.ADSCrossRefGoogle Scholar
  112. Higashino, F., Henderson, L. F. & Shimizu, F., “Experiments on the Interaction of a Pair of Cylindrical Weak Blast Waves in Air”, Shock Waves, Vol. unavailable, pp. unavailable, 1991.Google Scholar
  113. Honma, H. & Henderson, L. F., “Irregular Reflections of Weak Shock Waves in Polyatomic Gases”, Phy. Fluids A, Vol. 1, pp. 597–599, 1989.ADSCrossRefGoogle Scholar
  114. Honma, H., Maekawa, H. & Usui, T., “Numerical Analysis of Non Stationary Oblique Reflection of Weak Shock Waves”, Computer & Fluids, Vol. unavailable, pp. unavailable, 1991.Google Scholar
  115. Hornung, H. G., “The Effect of Viscosity on the Mach Stem Length in Unsteady Shock Reflection”, Flow of Real Liquids, Vol. 235, pp. 82–91, 1985.MathSciNetADSCrossRefGoogle Scholar
  116. Hornung, H. G., “Regular and Mach Reflection of Shock Waves”, Ann. Rev. Fluid Mech., Vol. 18, pp. 33–58, 1986.ADSCrossRefGoogle Scholar
  117. Hornung, H. G., Oertel, H. Jr. & Sandeman, R. J., “Transition to Mach Reflection of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation”, J. Fluid Mech., Vol. 90, pp. 541–560, 1979.ADSCrossRefGoogle Scholar
  118. Hornung, H. G. & Robinson, M. L., “Transition from Regular to Mach Refiction of Shock Waves. Part 2. The Steady Flow Criterion”, J. Fluid Mech., Vol. 123, pp. 155–164, 1982.ADSCrossRefGoogle Scholar
  119. Hornung, H. G. & Taylor, J. R., “Transition from Regular to Mach Reflection of Shock Waves. Part 1. The Effect of Viscosity in the Pseudosteady Case”, J. Fluid Mech., Vol. 123, pp. 143–153, 1982.ADSCrossRefGoogle Scholar
  120. Hu, T. C. J. & Glass, I. I., “Blast Wave Trajectories from Height of Burst”, AIAA J., Vol. 24, pp. 607–610, 1986.ADSCrossRefGoogle Scholar
  121. Hu, T. C. J. & Glass, I.I., “Pseudostationary Oblique Shock Wave Reflections in Sulphur Hexafluoride (SF6): Interferometric and Numerical Results”, Proc. Roy. Soc. London, Ser. A, Vol. 408, pp. 321–344, 1986.ADSCrossRefGoogle Scholar
  122. Hunt, B. L., “Calculation of Two-Dimensional and Three-Dimensional Regular Shock Interactions”, Aero. J., Paper No. 828, pp. 285–289, 1980.Google Scholar
  123. Hunt, B. L. & Lamont, P. J., “The Confluence of Three Shock Waves in a Three-Dimensional Flow”, Aero. Quart., Vol. 29, pp. 18–27, 1978.Google Scholar
  124. Ikui, T., Matsuo, K., Aoki, T. & Kondoh, N., “Investigations of Mach Reflection of a Shock Wave. Part 1. Configurations and Domains of Shock Reflection”, Bull. Japan Soc. Mech. Eng., Vol. 25, pp. 1513–1520, 1982.CrossRefGoogle Scholar
  125. Itoh, S., Okazaki, N. & Itaya, M., “On the Transition Between Regular and Mach Reflection in Truly Non-Stationary Flows”, J. Fluid Mech., Vol. 108, pp. 383–400, 1981.ADSCrossRefGoogle Scholar
  126. Itoh, K., Takayama, K. & Ben-Dor, G., “Numerical Simulation of the Reflection of a Planar Shock Wave over a Double Wedge”, Int. J. Numerical Methods Fluids, Vol. 13, pp. unavailable, 1991.Google Scholar
  127. Jahn, R. G., “Transition Process in Shock Wave Interactions”, J. Fluid Mech., Vol. 2, pp. 33–48, 1956.MathSciNetADSCrossRefGoogle Scholar
  128. Jones, D. M., Martin, P. M. E. & Thornhill, C. K., “A Note on the Pseudo-Stationary Flow Behind a Strong Shock Diffracted or Reflected at a Corner”, Proc. Roy. Soc. Lond., Ser. A, Vol. 209, pp. 238–248, 1951.MathSciNetADSMATHCrossRefGoogle Scholar
  129. Kaliski, S. & Wlodarczyk, E., “The Influence of the Parameters of State on the Characteristics of Regular Reflection of Oblique Shock Waves”, Proc. Vibr. Problems, Vol. 14, pp. 4–5, 1973.Google Scholar
  130. Kaliski, S. & Wlodarczyk, E., “Regular Reflection of Intense Oblique Shock Waves from a Rigid Wall in a Solid Body”, Proc. Vib. Problems, Vol. 15, pp. 271–282, 1974.ADSGoogle Scholar
  131. Kawamura, R. & Saito, H., “Reflection of Shock Waves-1. Pseudo-Stationary Case”, J. Phys. Soc. Japan, Vol. 11, pp. 584–592, 1956.ADSCrossRefGoogle Scholar
  132. Kireev, V. T., “On the Reflection of a Strong Shock Wave by a Sphere or a Cylinder”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 3, pp. 31–40, 1969.Google Scholar
  133. Klein, E. J., “Interaction of a Shock Wave and a Wedge: An Application of the Hydraulic Analogy”, AIAA J., Vol. 3, pp. 801–808, 1965.CrossRefGoogle Scholar
  134. Kobayashi, S., Adachi, T. & Suzuki, T., “An Investigation on the Transition Criterion for Reflection of a Shock over a Dusty Surface”, Dyn. Image Anal., Vol. 1, pp. 67–73, 1988.Google Scholar
  135. Kolgan, V. P. & Fonarev, A. C, “Development of the Flow in Shock Incidence on a Cylinder or Sphere”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 5, pp. 97–103, 1972.Google Scholar
  136. Krehl, P. & van der Geest, M., “The Discovery of the Mach Reflection Effect and Its Demonstration in an Auditorium”, Shock Wave, Vol. 1 , pp. 3–15, 1991.ADSCrossRefGoogle Scholar
  137. Krishnan, S., Brochet, C. & Gieret, R., “Mach Reflection in Condensed Explosives”, Propellants & Explosives, Vol. 6, pp. 170–172, 1981.CrossRefGoogle Scholar
  138. Kutler, P. & Sakell, L., “Three-Dimensional Shock on Shock Interaction Problem”, AIAA J., Vol. 13, pp. 1360–1367, 1975.ADSCrossRefGoogle Scholar
  139. Kutler, P., Sakell, L. & Aiello, G., “Two-Dimensional Shock on Shock Interaction Problem”, AIAA J., Vol. 13, pp. 361–367, 1975.ADSMATHCrossRefGoogle Scholar
  140. Kutler, P. & Shankar, V., “Diffraction of a Shock Wave by a Compression Corner: I. Regular Reflection”, AIAA J., Vol. 15, pp. 197–203, 1977.ADSMATHCrossRefGoogle Scholar
  141. Law, C. K. & Glass, I.I., “Diffraction of Strong Shock Waves by a Sharp Compressive Corner”, CASI Trans., Vol. 4, pp. 2–12, 1971.Google Scholar
  142. Law, C. K. & Glass, I.I., “Coments on Regions of Various Forms of Mach Reflection and Its Transition to Regular Reflection”, Acta Astro., Vol. 4, pp. 939–941, 1977.CrossRefGoogle Scholar
  143. Le Kuok Khyu, “Geometrical Investigation of the Regular Reflection of Shock Waves from a Wall”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 5, pp. 182–185, 1980.Google Scholar
  144. Lee, J. H. & Glass, I.I., “Pseudo-Stationary Oblique Shock Wave Reflections in Frozen and Equilibrium Air”, Prog. Aero. Sci., Vol. 21, pp. 33–80, 1984.CrossRefGoogle Scholar
  145. Li, Y., Zhang, D. & Cao, Y., “The Computational Numerical Experimental Research of Mach Reflection”, Acta Mech. Sin., Vol. 17, pp. 162–167, 1985.Google Scholar
  146. Lighthill, M. J., “The Diffraction of Blast. I”, Proc. Roy. Soc. Lond., Ser. A, Vol. 198, pp. 454–470, 1949.MathSciNetADSCrossRefGoogle Scholar
  147. Lighthill, M. J., “The Diffraction of Blast. II”, Proc. Roy. Soc. Lond., Ser. A, Vol. 200, pp. 554–565, 1950.MathSciNetADSCrossRefGoogle Scholar
  148. Lipnitskii, Yu. M. & Lyakhov, V. N., “Numerical Solution of the Problem of Shock Wave Diffraction at a Wedge”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 6, pp. 88–93, 1974.ADSGoogle Scholar
  149. Lipnitskii, Yu. M. & Panasenko, A. V., “Investigation into the Interaction of a Shock Wave with an Acute Case”, Izv. Akad. Nauk SSSR, Mech. Zh. i Gaza, Vol. 3, pp. 98–104, 1980.Google Scholar
  150. Lock, G. D. & Dewey, J. M., “An Experimental Investigation of the Sonic Criterion for Transition from Regular to Mach Reflection of Weak Shock Waves”, Exp. in Fluids, Vol. 7, pp. 289–292, 1989.ADSCrossRefGoogle Scholar
  151. Logvenov, A. Yu., Misonochnikov, A. L. & Rumyanstev, B. V., “Mach Reflection of Shock Waves in Condensed Media”, Sov. Tech. Phys. Lett., Vol. 13, pp. 131–132, 1987.Google Scholar
  152. Ludloff, H. F. & Friedman, M. B., “Mach Reflection of Shocks at an Arbitrary Incidence”, J. Appl. Phys., Vol 24, pp. 1247–1248, 1953.MathSciNetADSMATHCrossRefGoogle Scholar
  153. Ludloff, H. F. & Friedman, M. B., “Aerodynamics of Blasts-Diffraction of Blast Around Finite Corners”, J. Aero. Sci., Vol. 22, pp. 27–34, 1955.MathSciNetMATHGoogle Scholar
  154. Ludloff, H. F. & Friedman, M. B., “Difference Solution of Shock Diffraction Problem”, J. Aero. Sci., Vol. 22, pp. 139–140, 1955.MathSciNetGoogle Scholar
  155. Lyakhov, V. N., “Unsteady Loads in Shock Wave Diffraction”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 4, 123–129, 1975.Google Scholar
  156. Lyakhov, V. N., “Mathematical Simulation of Mach Reflection of Shock Waves in Media with Different Adiabatic Indicies”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 3, 90–94, 1976.Google Scholar
  157. Lyakhov, V. N., “Concerning the Evaluation of Pressure in Unsteady Reflection of Shock Waves”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 2, 100–106, 1977.ADSGoogle Scholar
  158. Lyakhov, V. N., “Interaction of Shock Waves of Moderate Intensity with Cylinders”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 2, 113–119, 1979.ADSGoogle Scholar
  159. Lyakhov, V. N. & Ryzhov, A. S., “On the Law of Similarity in Nonlinear Reflection of Shock Waves by a Rigid Wall”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 3, 116–123, 1977.ADSGoogle Scholar
  160. Mach, E., “Über den Verlauf von Funkenwellen in der Ebene und im Räume”, Sitzungsber. Akad. Wiss. Wien, Vol. 78, pp. 819–838, 1878.Google Scholar
  161. Makarevich, G. A., Lisenkova, G. S., Tikhomirov, N. A. & Khodstev, A. V., “Experimental Study of Mach Reflection of Weak Shock Waves”, Sov. Phys.-Tech. Phys., Vol. 29, pp. 370–372, 1984.Google Scholar
  162. Makarevich, G. A., Predvoditeleva, O. A. & Lisenkova, G. S., “Reflection of Shock Waves from a Wedge”, Tepl. Vys. Temp., Vol. 12, pp. 1318–1321, 1974.Google Scholar
  163. Makomaski, A. H., “Some Effects of Surface Roughness on Two Dimensional Mach Reflection of Moving Plane Shock Waves in Air”, Can. Aeron. Space J., Vol. 12, pp. 109–111, 1966.Google Scholar
  164. Marconi, F., “Shock Reflection Transition in Three-Dimensional Steady Flow About Interfering Bodies”, AIAA J., Vol. 21, pp. 707–713, 1983.ADSCrossRefGoogle Scholar
  165. Matsuo, K., Aoki, T. & Hirahara, H., “Visual Studies of Characteristics of Slipstream in Mach Reflection of a Shock Wave”, Flow Visualization, Vol. 4, pp. 543–548, 1987.ADSGoogle Scholar
  166. Matsuo, K., Aoki, T., Hirahara, H., Kondoh, N. & Kuriwaki, K., “Investigations of Mach Reflection of a Shock Wave. Part 3: Strength of a Reflected Shock Wave”, Bull. Japan Soc. Mech. Eng., Vol. 29, pp. 428–433, 1986.CrossRefGoogle Scholar
  167. Matsuo, K., Aoki, T., Hirahara, H., Kondoh, N. & Kishigami, T., “Investigations of Mach Reflection of a Shock Wave. Part 4: The Transition Between Regular and Mach Reflection”, Bull. Japan Soc. Mech. Eng., Vol. 29, pp. 434–438, 1986.CrossRefGoogle Scholar
  168. Matsuo, K., Aoki, T., Hirahara, H. & Kondoh, N., “Nonlinear Problem on Interaction Between a Shock Wave and Rigid Wall”, in Theor. & Appl. Mech., Vol. 33, pp. 51–57, 1985.Google Scholar
  169. Matsuo, K., Aoki, T., Kondoh, N. & Hirahara, H., “Investigations of Mach Reflection of a Shock Wave. Part 2: Shape of a Reflected Shock Wave”, Bull. Japan Soc. Mech. Eng., Vol. 29, pp. 422–427, 1986.CrossRefGoogle Scholar
  170. Matsuo, K., Ikui, T, Aoki, T., & Kondoh, N., “Interaction of a Propagating Shock Wave with an Inclined Wall”, Theor. & Appl. Mech., Vol. 31, pp. 429–437, 1983.Google Scholar
  171. Merritt, D. L., “Mach Reflection on a Cone”, AIAA J., Vol. 6, pp. 1208–1209, 1968.ADSCrossRefGoogle Scholar
  172. Milton, B. E. & Archer, R. D., “Generation of Implosions by Aera Change in a Shock Tube”, AIAA J., Vol. 7, pp. 779–780, 1969.ADSCrossRefGoogle Scholar
  173. Milton, B. E “Mach Reflection Using Ray-Shock Theory”, AIAA J., Vol. 13, pp. 1531–1533, 1975.ADSCrossRefGoogle Scholar
  174. Mireis, H., “Mach Reflection Flowfields Associated with Strong Shocks”, AIAA J., Vol. 23, pp. 522–529, 1985.ADSCrossRefGoogle Scholar
  175. Mogilevich, L. I. & Shindyapin, G. P., “On Nonlinear Diffraction of Weak Shock Waves”, Prikl. Mat. & Mekh., Vol. 35, pp. 492–498, 1971.Google Scholar
  176. Mölder, S., “Reflection of Curved Shock Waves in Steady Supersonic Flow”, CASI Trans., Vol. 4, pp. 73–80, 1971.Google Scholar
  177. Mölder, S., “Polar Streamline Directions at the Triple Point of a Mach Interaction of Shock Waves”, CASI Trans., Vol. 5, pp. 88–89, 1972.Google Scholar
  178. Mölder, S., “Particular Conditions for the Termination of Regular Reflection of Shock Waves”, CASI Trans., Vol. 25, pp. 44–49, 1979.Google Scholar
  179. Morgan, K., “The Diffraction of a Shock Wave by a Slender Body”, J. Appl. Math. & Phys., Vol. 26, pp. 13–29, 1975.MATHCrossRefGoogle Scholar
  180. Morgan, K., “The Diffraction of a Shock Wave by an Inclined Body of Revolution”, J. Appl. Math. & Phys., Vol. 26, pp. 299–306, 1975.MATHCrossRefGoogle Scholar
  181. Moran, T. P. & Moorhem, W. K., “ Diffraction of a Plane Shock by an Analytic Blunt Body”, J. Fluid Mech., Vol. 38, pp. 127–136, 1969.ADSCrossRefGoogle Scholar
  182. Morro, A., “Oblique Interaction of Waves with Shocks”, Acta Mech., Vol. 38, pp. 241–248, 1981.MathSciNetADSMATHCrossRefGoogle Scholar
  183. Murdoch, J. W., “Shock Wave Interaction with Two Dimensional Bodies”, AIAA J., Vol. 13, pp. 15–17, 1975.Google Scholar
  184. Neumann, J. von, Collected Works, Vol. 6, pp. 238–308, Pergamon press, 1963.Google Scholar
  185. Obermeier, F. & Handke, E., “Theoretische Ergebnisse zur Mach Reflexion Schwacher Stoßwellen”, Z. Ang. Math. & Mech., Vol. 65, T202-T204, 1985.Google Scholar
  186. Oertel, H. Jr., “Oxygen Vibrational and Dissociation Relaxation Behind Regular Reflected Shocks”, J. Fluid Mech. Vol. 74, pp. 477–495, 1976.ADSMATHCrossRefGoogle Scholar
  187. Oertel, H. Jr., “Oxygen Dissociation Relaxation Behind Oblique Reflected and Stationary Oblique Shocks”, Arch. Mech., Vol. 30, pp. 123–133, 1978.Google Scholar
  188. Pack, D. C, “The Reflection and Diffraction of Shock Waves”, J. Fluid Mech., Vol. 18, pp. 549–576, 1964.ADSMATHCrossRefGoogle Scholar
  189. Pant, J. C., “Regular Reflection of a Shock Wave in the Presence of a Transverse Magnetic Field”, Z. Ang. Math. & Mech., Vol. 47, pp. 73–85, 1968.CrossRefGoogle Scholar
  190. Pant, J. C, “Reflection of a Curved Shock from a Straight Rigid Boundary”, Phys. Fluids, Vol. 14, pp. 534–538, 1971.ADSMATHCrossRefGoogle Scholar
  191. Pekurovskii, L. E., “Shock Wave Diffraction on a Thin Wedge Moving with a Slip Relative to the Wave Front with Irregular Shock Interaction”, Prikl. Mat. & Mekh., Vol. 44, pp. 183–190, 1981.Google Scholar
  192. Piechór, K., “Reflection of a Weak Shock Wave from an Isothermal Wall”, Arch. Mech., Vol. 32, pp. 233–249, 1980.MATHGoogle Scholar
  193. Piechór, K., “Regular Interaction of Two Weak Shock Waves”, Arch. Mech., Vol. 33, pp. 829–843, 1981.MATHGoogle Scholar
  194. Piechór, K., “Regular Reflection of a Weak Shock Wave from an Inclined Plane Isothermal Wall”, Arch. Mech., Vol. 33, pp. 337–346, 1981.MATHGoogle Scholar
  195. Podlubnyi, V. V. & Fonarev, A. S., “Reflection of a Spherical Blast Wave from Plane Surface”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 6, pp. 166–172, 1974.Google Scholar
  196. Poluboyarinov, A. K. & Tsirkunov, V. E., “Concerning the Reflection of a Shock Wave by a Cylinder or a Sphere”, Fluid Mech.-Sov. Res., Vol. 10, pp. (unavailble), 1981.Google Scholar
  197. Ram, R. & Sharma, V. D., “Regular Reflection of a Shock Wave from a Rigid Wall in a Steady Plane Flow of an Ideal Dissociating Gas”, Tensor, Vol. 26, pp. 185–190, 1972.MathSciNetMATHGoogle Scholar
  198. Rawling, G. & Polachek, H., “On the Three Shock Configuration”, Phys. Fluids, Vol. 1, pp. 572–577, 1950.Google Scholar
  199. Reichenbach, H., “Contribution of Ernst Mach to Fluid Mechanics”, Ann. Rev. Fluid Mech., Vol. 15, pp. 1–28, 1983.MathSciNetADSCrossRefGoogle Scholar
  200. Rusanov, V. V., “Calculation of the Interaction of Non-Stationary Shock Waves and Obstructions”, J. Num. Anal. & Math. Phys., Vol. 1, pp. 267–279, 1961.MathSciNetGoogle Scholar
  201. Ryzhov, O. S. & Khristianovich, S. A., “Nonlinear Reflection of Weak Shock Waves”, Prikl. Mat. & Mekh., Vol. 22, pp. 586–599 1958.Google Scholar
  202. Sakurai, A., “On The Problem of Weak Mach Reflection”, J. Phys. Soc. Japan, Vol. 19, pp. 1440–1450, 1964.MathSciNetADSCrossRefGoogle Scholar
  203. Sakurai, A., Henderson, L. F., Takayama, K., Walenta, Z. & Colella, P., “On the von Neumann Paradox of Weak Mach Reflection”, Fluid Dyn. Res., Vol. 4, pp. 333–345, 1989.ADSCrossRefGoogle Scholar
  204. Schmidt, B., “Shock-Wave Transition from Regular to Mach Reflection on a Wedge-Shaped Edge”, Z. Ang. Math. & Mech., Vol. 65, pp. 234–236, 1985.Google Scholar
  205. Schneyer, G. P., “Numerical Simulation of Regular and Mach Reflections”, Phys. Fluids, Vol. 18, pp. 1119–1124, 1975.ADSMATHCrossRefGoogle Scholar
  206. Semenov, A. N. & Syshchikova, M. P., “Properties of Mach Reflection in the Interaction of Shock Waves with a Stationary Wedge”, Comb. Expl. & Shock Waves, Vol. 11, pp. 506–515, 1975.CrossRefGoogle Scholar
  207. Semenov, A. N., Syshchikova, M. P. & Berezkina, M. K., “Experimental Investigation of Mach Reflection in a Shock Tube”, Sov. Phys.- Tech. Phys., Vol. 15, pp. 795–803, 1970.ADSGoogle Scholar
  208. Shankar, V., Kutler, P. & Anderson D. A., “Diffraction of a Shock Wave by a Compression Corner: Part II: Single Mach Reflection”, AIAA J., Vol. 16, pp. 4–5, 1978.ADSCrossRefGoogle Scholar
  209. Sharma, V. D. & Shyman, R., “Regular Reflection of a Shock Wave from a Rigid Wall in a Steady Plane Flow of a Vibrationally Relaxing Gas”, Indian J. Pure & Appl. Math., Vol. 15, pp. 15–22, 1984.MathSciNetMATHGoogle Scholar
  210. Shindyapin, G. P., “Irregular Reflection of Weak Shock Waves from a Rigid Wall”, Zh. Prikl. Mekh. i. Tekh. Fiz., Vol. 2, pp. 22–28, 1964.;Google Scholar
  211. Shindyapin, G. P., “Regular Reflection of Weak Shock Waves from a Wall”, Prikl. Mat. Mekh., Vol. 29, pp. 114–121,1965.Google Scholar
  212. Shindyapin, G. P., “Irregular Interaction of Weak Shock Waves of Different Intensity”, Prikl. Mat. Mech., Vol. 38, pp. 105–114, 1974.Google Scholar
  213. Shindyapin, G. P., “Numerical Solution of the Problem of Non-Regular Reflection of a Weak Shock Wave by a Rigid Wall in a Perfect Gas”, Zh. Vyehisl. Mat. Mat. Fiz., Vol. 20, pp. 249–254, 1980.MathSciNetMATHGoogle Scholar
  214. Shirouzu, M. & Glass, I. I., “Evaluation of Assumptions and Criteria in Pseudostationary Oblique Shock Wave Reflections”, Proc. Roy. Soc. Lond., Ser. A, Vol. 406, pp. 75–92, 1986.ADSCrossRefGoogle Scholar
  215. Skews, B. W., “The Shape of a Diffracting Shock Wave”, J. Fluid Mech., Vol. 29, pp. 297–304, 1967.ADSCrossRefGoogle Scholar
  216. Skews, B. W., “Shock-Shock Reflection”, CASI Trans., Vol. 4, pp. 16–19, 1971.Google Scholar
  217. Skews, B. W., “The Flow in the Vicinity of the Three-Shock Intersection”, CASI Trans., Vol. 4, pp. 99–107, 1972.Google Scholar
  218. Skews, B. W., “The Shape of a Shock in Regular Reflection from a Wedge”, CASI Trans., Vol. 5, pp. 28–32, 1972.Google Scholar
  219. Skews, B. W., “Shock Wave Shaping”, AIAA J., Vol. 10, pp. 839–841, 1972.ADSCrossRefGoogle Scholar
  220. Smith, W. R., “Mutual Reflection of Two Shock Waves of Arbitrary Strengths”, Phys. Fluids, Vol. 2, pp. 533–541, 1959.MathSciNetADSMATHCrossRefGoogle Scholar
  221. Sokolov, V. B., “Reflection of a Strong Shock Wave by an Ellipsoid of Revolution and Elliptical Cylinder”, Izv. Akad. Nauk SSSR Mekh. Zh. i Gaza, Vol. 4, pp. 173–174, 1974.Google Scholar
  222. Srivastava, R. & Chopra, M. G., “Diffraction of Blast Waves for the Oblique Case”, J. Fluid Mech., Vol. 40, pp. 821–831, 1970.ADSMATHCrossRefGoogle Scholar
  223. Srivastava, R. S. & Deschambault, R. L., “Pressure Distribution Behind a Nonstationary Reflected-Diffracted Oblique Shock Wave”, AIAA J., Vol. 22, pp. 305–306, 1984.ADSCrossRefGoogle Scholar
  224. Sternberg, J., “Triple-Shock-Wave Interactions”, Phys. Fluids, Vol. 2, pp. 179–206, 1959.ADSMATHCrossRefGoogle Scholar
  225. Suhindyapin, G. P., “On Irregular Reflection of Weak Shock Waves by a Rigid Wall”, Zh. Prikl. Mat. Tekh. Fiz., Vol. 2, pp. 22–28, 1964.Google Scholar
  226. Suhindyapin, G. P., “On the Regular Reflection of Weak Shock Waves by a Rigid Wall”, Prikl. Mat. & Mekh., Vol. 29, pp. 114–121, 1965.Google Scholar
  227. Suhindyapin, G. P., “Irregular Interaction of Weak Shock Waves of Different Intensity”, Prikl. Mat. & Mekh., Vol. 38, pp. 105–114, 1974.Google Scholar
  228. Suhindyapin, G. P., “Numerical Solution of the Problem of Non Regular Reflection of a Weak Shock Wave by a Rigid Wall in a Perfect Gas”, J. Num. Anal. & Math. Phys., Vol. 20, pp. 249–254, 1980.Google Scholar
  229. Suzuki, T. & Adachi, T., “The Reflection of a Shock Wave over a Wedge with Dusty Surface”, Trans. Japan Soc. Aero. & Astro., Vol. 28, pp. 132–139, 1985.Google Scholar
  230. Suzuki, T. & Adachi, T., “Comparison of Shock Reflection from a Dust Layer with Those from a Smooth Surface”, Theo. & Appl. Mech., Vol. 35, pp. 345–352, 1987.Google Scholar
  231. Suzuki, T. & Adachi, T., “An Experimental Study of Oblique Shock Wave Reflection over a Dusty Surface”, Trans. Japan Soc. Aero. & Astro., Vol. 31, pp. 104–110, 1988.Google Scholar
  232. Suzuki, T., Adachi, T. & Kobayashi, S., “Image Analysis of Oblique Shock Reflection over a Model Wedge”, J. Visualization Soc. Japan, Vol. 10, Suppl. 2, pp. 7–10, 1990.CrossRefGoogle Scholar
  233. Suzuki, T., Adachi, T. & Tanabe, K., “Structure of the Mach-Type Reflection on a Dust Layer”, Theor. & Appl. Mech., Vol. 34, pp. 73–80, 1986.ADSGoogle Scholar
  234. Syshchikova, M. P. & Krassovskaya, I. V., “Some Properties of Regular and Irregular Interaction of Shock Waves”, Arch. Mech., Vol. 31, pp. 135–145, 1979.Google Scholar
  235. Syshchikova, M. P., Semenov, A. N. & Berezkina, M. K., “Shock Wave Reflection by a Curved Concave Surface”, Sov. Phys. Tech. Phys., Vol. 2, pp. 61–66, 1976.Google Scholar
  236. Sysoev, N. N., “Unsteady Reflection of Shock Waves by a Sphere or Cylinder”, Ser. Phys. & Astron., Vol. 20, pp. 90–91, 1979.MATHGoogle Scholar
  237. Sysoev, N. N. & Shugaev, F. V., “Transient Reflection of a Shock Wave from a Sphere and a Cylinder”, Vestnik Moskovskogo Universiteta. Fiz., Vol. 34, pp. 90–91, 1979.Google Scholar
  238. Takayama, K. & Ben-Dor, G., “A Reconsideration of the Hysteresis Phenomenon in the Regular? Mach Reflection Transition in Truly Nonstationary Flows,” Israel J. Tech., Vol. 21, pp. 197–204, 1983.Google Scholar
  239. Takayama, K. & Ben-Dor, G., “The Inverse-Mach Reflection”, AIAA J., Vol. 23, pp. 1853–1859, 1985.MathSciNetADSCrossRefGoogle Scholar
  240. Takayama, K. & Ben-Dor, G., “Application of Streak Photgraphy for the Study of Shock Wave Reflections over a Double Wedge”, Exp. in Fluids, Vol. 6, pp. 11–15, 1987.ADSGoogle Scholar
  241. Takayama, K. & Ben-Dor, G., “A Reconsideration of the Transition Criterion from Mach to Regular Reflection over Cylindrical Concave Surfaces”, Korean Soc. Mech. Eng. J., Vol. 3, pp. 6–9, 1989.Google Scholar
  242. Takayama, K. & Ben-Dor, G., “Pseudo-Steady Oblique Shock Wave Reflections over Water Wedges”, Exp. in Fluids, Vol. 8, pp. 129–136, 1989.ADSCrossRefGoogle Scholar
  243. Takayama, K., Ben-Dor, G. & Gotoh, J., “Regular to Mach Reflection Transition in Truly Nonstationary Flows — Influence of Surface Roughness”, AIAA J., Vol. 19, pp. 1238–1240, 1981.ADSCrossRefGoogle Scholar
  244. Takayama, K. & Sekiguchi, H., “Triple-Point Trajectory of a Strong Spherical Shock Wave”, AIAA J., Vol. 19, pp. 815–817, 1981.ADSCrossRefGoogle Scholar
  245. Tan, H. S., “Strengh of Reflected Shock in Mach Reflection”, J. Aero. Sci., Vol. 18, pp. 768–770, 1951.MATHGoogle Scholar
  246. Taub, A. H., “Refraction of Plane Shock Waves”, Phys. Rev., Vol. 72, pp. 51–60, 1947.MathSciNetADSMATHCrossRefGoogle Scholar
  247. Ter-Minassiants, S. M., “The Diffraction Accompanying the Regular Reflection of a Plane Obliquely Impinging Shock Wave from the Walls of an Obtuse Wedge”, J. Fluid Mech., Vol. 35, pp. 391–410, 1969.ADSMATHCrossRefGoogle Scholar
  248. Teshukov, V. M., “On Regular Reflection of a Shock Wave from a Rigid Wall”, Prikl. Mat. & Mekh., Vol. 46, pp. 225–234, 1982.MathSciNetGoogle Scholar
  249. Ting, L., & Ludloff, H. F., “Difference Solution of Shock Diffraction Problem”, J. Aero. Sci., Vol. 19, pp. 317–328, 1952.MathSciNetMATHGoogle Scholar
  250. Tsu-Sien-Shao, “Numerical Solution of Plane Viscous Shock Reflections”, J. Comp. Phys., Vol. 1, pp. 367–381, 1977.Google Scholar
  251. Voinovich, P. A., Popov, F. D. & Fursenko, A. A., “Numerical Simulation of Shock Wave Reflection from a Concave Surface”, Sov. Tech. Phys. Lett., Vol. 4, pp. 127–128, 1978.Google Scholar
  252. Voloshinov, A. V., Kovalev, A. D. & Shindyapin, G. P., “Transition from Regular Reflection to Mach Reflection when a Shock Wave Interacts with a Wall in Two-Phase Gas-Liquid Medium”, Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza, Vol. 5, pp. 190 – 192, 1983.ADSGoogle Scholar
  253. Voloshinov, A. V., Kovalev, A. D. & Shindyapin, G. P., “Transition from Regular Reflection to Mach Reflection When a Shock Wave Interacts with a Wall in a Two- Phase Gas-Liquid Medium”, Fluid Dyn., Vol. 18, pp. 827–829, 1983.ADSCrossRefGoogle Scholar
  254. Walenta, Z. A., “Regular Reflection of the Plane Shock Wave from an Inclined Wall”, Arch. Mech., Vol. 26, pp. 825–832, 1974.Google Scholar
  255. Walenta, Z. A., “Microscopic Structure of the Mach-Type Reflection of the Shock Wave”, Arch. Mech., Vol. 32, pp. 819–825, 1980.Google Scholar
  256. Walenta, Z. A., “Formation of the Mach-Type Reflection of Shock Waves”, Arch. Mech., Vol, 35, pp. 187–196, 1983.Google Scholar
  257. Walker, D. K., Dewey, J. M. & Scotten, L. N., “Observation of Density Discontinuities Behind Reflected Shocks Close to the Transition from Regular to Mach Reflection”, J. Appl. Phys., Vol. 53, pp. 1398–1400, 1982.ADSCrossRefGoogle Scholar
  258. White, D. R., “Reflection of Strong Shock at Nearly Glancing Incidence”, J. Aero. Sci., Vol. 18, pp. 633–634, 1951.Google Scholar
  259. Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 1. Two Dimensional Problems”, J. Fluid Mech. Vol. 2, pp. 145–171, 1957.MathSciNetADSMATHCrossRefGoogle Scholar
  260. Woodward, P. R. & Colella, P., “Numerical Solution of Two-Dimensional Fluid Flow with Strong Shocks”, J. Compt. Phys., Vol. 54, pp. 115–173, 1984.MathSciNetADSMATHCrossRefGoogle Scholar
  261. Xu, D. Q. & Honma, H., “Numerical Simulation for Nonstationary Mach Reflection of a Shock Wave: A Kinetic Model Approach”, Shock Waves, Vol. 1, pp. 43–50, 1991.ADSMATHCrossRefGoogle Scholar
  262. Yang, J.Y., Liu, Y. & Lomax, H., “Computation of Shock Wave Reflection by Circular Cyliners”, AIAA J., Vol. 25, pp. 683–689, 1987.ADSCrossRefGoogle Scholar
  263. Yu, Sh. & Gronig, H., “A Simple Approximation for Axially Symmetric Diffraction of Plane Shocks by Cones”, Z. Naturforsch, Vol. 39a, pp. 320–324, 1984.ADSGoogle Scholar
  264. Zaslavskii, B. I. & Safarov, R. A., “Mach Reflection of Weak Shock Waves from a Rigid Wall”, Zh. Prikl. Mekh. i Tekh. Fiz., Vol. 5, pp. 26–33, 1973.Google Scholar
  265. Zaslavskii, B. I. & Safarov, R. A., “On the Similarity of Flows Occurring in Weak Shock Wave Reflections from a Rigid Wall or Free Surface”, Fiz. Goreniya i Vzryva, Vol. 4, pp. 579–585, 1973.Google Scholar
  266. Zhigalko, Y. F., “Concerning the Problem of Shock Wave Diffraction and Reflection”, Vestnik Moskovskogo Universiteta. Fiz., Vol. 1, pp. 78–82, 1967.Google Scholar
  267. Zhigalko, Y. F., “A Linear Approximation of Shock Wave Diffraction and Reflection”, Vestnik Moskovskogo Universiteta. Fiz., Vol. 3, pp. 94–104, 1969.Google Scholar
  268. Zhigalko, Y. F., “Approximate Locally-Nonlinear Solutions of the Problem on Interaction Between a Shock Wave and a Rigid Wall”, Fluid Mech. Sov. Res., Vol. 4, pp. 81–91, 1975.Google Scholar
  269. Zhigalko, Y. F., “Linear Approximation of the Reflection of Shock Waves from a Concave Wall”, Fluid Mech. Sov. Res., Vol. 10, pp. 60–71, 1981.MATHGoogle Scholar
  270. Zhigalko, Y. F., Kolyshkina, L. L. & Shevtsov, V. D., “Vortical Singularity of Self-Similar Gas Flow in the Reflection of a Shock Wave”, Zh. Prikl. Mekh. i Tekh. Fiz., Vol. 1, pp. 107–111, 1982.Google Scholar
  271. Znamenskaya, I. A., Ryazin, A. P. & Shugaev, F. V., “On Some Features of Gas Parameter Distribution in the Early Stages of Shock Reflection by a Sphere or Cylinder”, Izv. Akad. Nauk SSSR Mekh. Zh. i Gaza, Vol. 3, pp. 103–110, 1979.Google Scholar
  272. Zumwalt, G. W., “Weak Shock Reflections at Near 90° Angle of Incidence”, J. Appl. Mech., Vol. 41, pp. 1142–1143, 1974.ADSCrossRefGoogle Scholar

Reports

  1. Adachi, T., Kobayashi, S. & Suzuki, T., “Unsteady Behavior of Mach Reflection over a Wedge with Surface Roughness”, Ann. Rep. Japan Soc. Heat Fluid Eng., Vol. 4, pp. 53–57, 1989.Google Scholar
  2. Ando, S., “Pseudo-Stationary Oblique Shock Wave Reflection in Carbon Dioxide Domains and Boundaries”, UTIAS Tech. Note 231, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1981.Google Scholar
  3. Bargmann, V., “On Nearly Glancing Reflection of Shocks”, Sci. Res. Dev. OSRD Rep. 5171, Washington, DC, U.S.A. or Nat. Defence Res. Committee, NDRC, 1945.Google Scholar
  4. Bargmann, V. & Montgomery, D., “Prandtl-Meyer Zones in Mach Reflection”, Off. Sci. Res. Dev., OSRD Rep. 5011, Washington, DC, U.S.A., 1945.Google Scholar
  5. Ben-Dor, G., “Regions and Transitions of Nonstationary Oblique Shock Wave Diffractions in Perfect and Imperfect Gases”, UTIAS Rep. 232, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1978.Google Scholar
  6. Ben-Dor, G., “Nonstationary Oblique Shock Wave Reflection in Nitrogen and Argon: Experimental Results”, UTIAS Rep. 237, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1978.Google Scholar
  7. Bertrand, B. P., “Measurement of Pressure in Mach Reflection of Strong Shock Waves in a Shock Tube”, Mem. Rep. 2196, Ballistic Research Laboratory, U.S.A., 1972.Google Scholar
  8. Bleakney, W., “The Effect of Reynolds Number on the Diffraction of Shock Waves”, Princeton Univ., Dept. Phys. Tech. Rep. II-8, Princeton, N.J., U.S.A., 1951.Google Scholar
  9. Clarke, J. F., “Regular Reflection of a Weak Shock Wave From a Rigid Porous Wall. Some Additional Results”, CoA Memo 8225, Cranfield Inst. Tech., Cranfield, England, 1982.Google Scholar
  10. Clarke J. F., “Inertia Effects on the Regular Reflection of a Weak Reflection of a Weak Shock Wave from a Rigid Porous Wall”, CoA Rep. NFP84/2, Cranfield Inst. Tech. Cranfield, England, 1984.Google Scholar
  11. Deschambault, R. L., “Nonstationary Oblique-Shock-Wave Reflections in Air”, UTIAS Rep. 270, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1984.Google Scholar
  12. Fletcher, C. H., “The Mach Reflection of Weak Shock Waves”, Princeton Univ., Dept. Phys. Tech. Rep. II-4, Princeton, N.J., U.S.A., 1950.Google Scholar
  13. Friend, W. H., “The Interaction of a Plane Shock Wave with an Inclined Perforated Plate”, UTIAS Tech. Note 25, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1958.Google Scholar
  14. Fry, M., Picone, J. M., Boris, J. P. & Book, D. L., “Transition to Double-Mach Stem for Nuclear Explosion at 104-ft Height of Burst”, NRL MR 4630, 1981.Google Scholar
  15. Fuchs, J. & Schmidt, B., “Enstehungsort des Tripelpunktes und Scine Anschließende Spur Beim Ubergang von Regularer Reflektion zur Mach Reflektion”, Stromangsmechanik und Stromeungsmaschinen Rep. 40/89, Universitat Karlsruhe, Karlsruhe, Germany, 1989.Google Scholar
  16. Glass, I. I., “Beyond Three Decades of Continuous Research at UTIAS on Shock Tubes and Waves”, UTIAS Rev. 45, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ontario, Canada, 1981.Google Scholar
  17. Glass, I. I., “Some Aspects of Shock Wave Research”, UTIAS Rev. 48, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1986.Google Scholar
  18. Glaz, H. M., Colella, P., Glass, I. I. & Deschambault, R. L., “A Detailed Numerical, Graphical and Experimental Study of Oblique Shock Wave Reflections”, LBL-20033, Lawrence Berkely Lab., Berkely, CA, U.S.A., 1985.CrossRefGoogle Scholar
  19. Glaz, H. M., Colella, P., Glass, I. I. & Deschambault, R. L., “ A Numerical and Experimental Study of Pseudostationary Oblique-Shock-Wave Reflections in Argon and Air”, UTIAS Rep. 285, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1986.Google Scholar
  20. Guo Chang-Ming, “Numerical Calculation of Mach Reflection of Spherical Shock Wave on Rigid Wall”, Rep. 9/85, Dept. Modern Mech., Univ. Sci. & Tech. China, Hefei, China, 1985.Google Scholar
  21. Handke, E. & Obemeier, F., “Some Theoretical Results on Mach Reflection of Moderately Strong Shock Waves”, Max Planck Inst. Rep. 14, 1983.Google Scholar
  22. Harrison, F. B. & Bleakney, W., “Remeasurement of Reflection Angles in Regular and Mach Reflection of Shock Waves”, Princeton Univ., Dept. Phys. Tech. Rep. II-O, Princeton, N.J., U.S.A., 1947.Google Scholar
  23. Hisley, D. M., “BLAST2D Computations of the Reflection of Planar Shocks from Wedge Surfaces with Comparison to SHARC and SLEATH Results”, Tech. Rep. BRL-TR-3147, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, U.S.A., 1990.Google Scholar
  24. Hu, T. C. J., “Pseudo-Stationary Oblique-Shock-Wave-Reflections in a Polyatomic Gas-Sulfur Hexafluoride”, UTIAS Tech. Note 253, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1985.Google Scholar
  25. Hu, T. C. J. & Shirouzu, M., “Tabular and Graphical Solutions of Regular and Mach Reflections in Pseudo-Stationary Frozen and Vibrational Equilibrium Flows”, UTIAS Rep. 283, Parts 1 & 2, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1985.Google Scholar
  26. Ikui, T., Matsuo, K. Aoki, T. & Kondoh, N., “Mach Reflection of a Shock Wave from an Inclined Wall”, Memoirs Faculty Eng., Kyushu Univ., Vol. 41, pp. 361–380, Fukuoka, Japan, 1981.ADSGoogle Scholar
  27. Jahn, R. G., “The Refraction of Shock Waves at a Gaseous Interface; Regular Reflection of Weak Shocks”, Princeton Univ., Dept. Phys. Tech. Rep. 11–16, Princeton, N.J., U.S.A., 1954.Google Scholar
  28. Jahn, R. G., “The Refraction of Shock Waves at a Gaseous Interface; Regular Reflection of Strong Shocks”, Princeton Univ., Dept. Phys. Tech. Rep. 11–18, Princeton N.J., U.S.A., 1955.Google Scholar
  29. Jahn, R. G., “The Refraction of Shock Waves at a Gaseous Interface; Irregular Refraction”, Princeton Univ., Dept. Phys. Tech. Rep. 11–19, Princeton, N.J., U.S.A., 1955.Google Scholar
  30. Kaca, J., “An Interferometric Investigation of the Diffraction of a Planar Shock Wave over a Semicircular Cylinder”, UTIAS Tech. Note 269, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1988.Google Scholar
  31. Law, C. K. “Diffraction of Strong Shock Waves by a Sharp Compressive Corner”, UTIAS Tech. Note 150, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1970.Google Scholar
  32. Lean, G. H., “Report on Further Experiments on the Reflection of Inclined Shock Waves”, Nat. Phys. Lab. London, England, 1946.Google Scholar
  33. Lee, J. H. & Glass, I. I. “Domains and Boundaries of Pseudo Stationary Oblique Shock Wave Reflections in Air”, UTIAS Rep. 262, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1982.Google Scholar
  34. Li, J. C. & Glass, I. I., “Collision of Mach Reflections with a 90-Degree Ramp in Air and CO2”, UTIAS Rep. 290, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1985.Google Scholar
  35. Lottero, R. E. & Wortman, J. D., “Evaluation of the HULL and SHARC Hydrocodes in Simulating the Reflection of a Mach 2.12 Non-Decaying Shock on Wedges of Various Angles”, Tech. Rep. BRL-TR-****, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, U.S.A., 1991.Google Scholar
  36. Lozzi, A., “Double Mach Reflection of Shock Waves”, M.Sc. Thesis, The Univ. Sydney, Sydney, New South Wales, Australia, 1971.Google Scholar
  37. Meiburg, E., Oertel, H. Jr., Walenta, Z. & Fiszdon, W.,“Quasistationary Mach Reflection of Shock Waves, Preliminary Results of Experimental and Monte Carlo Investigations”, DFVLR-AVA Rep. IB-221–83A, 1983.Google Scholar
  38. Mireis, H., “Mach Reflection Flow Fields Associated with Strong Shocks”, Aerospace Corp., TR-0083(3785)-1, El Segundo, CA, U.S.A.Google Scholar
  39. Mölder, S., “Head on Interaction of Oblique Shock Waves”, UTIAS Tech. Note 38, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1960.Google Scholar
  40. Neumann, J. von, “Oblique Reflection of Shocks”, Explos. Res. Rep. 12, Navy Dep., Bureau of Ordnance, Washington, DC, U.S.A, 1943.Google Scholar
  41. Neumann, J. von, “Refraction, Intersection and Reflection of Shock Waves”, NAVORD Rep. 203–45, Navy Dep., Bureau of Ordnance, Washington, DC, U.S.A., 1945.Google Scholar
  42. Olim, M., “A Study of the Reflection of Weak (1.1 < M1 < 1.5) Shocks and the Development of a Revised Three Shock Solution”, Ph.D Thesis, Dept. Phys., Univ. Victoria, Victoria, B.C., Canada, 1990.Google Scholar
  43. Onodera, H. & Takayama, K., “Shock Wave Propagation over Slitted Wedges”, Rep. Inst. Fluid Sci., Tohoku Univ., Sendai, Japan, Vol. 1, pp. 45–66, 1990.Google Scholar
  44. Polachek, H. & Seeger, R. J., “Regular Reflection of Shocks in Water-Like Substances”, Exples. Res. Rep. 14, Navy Dept., Bureau of Ordnance, Washington, DC, U.S.A., 1943.Google Scholar
  45. Prasse, H. G., “An Analytic Description of the Expansion of the Reflected Shock Wave at the Mach Reflection on Wedges”, Rep. 4/72, Ernst Mach Institute, Freiburg, Germany, 1972.Google Scholar
  46. Reichenbach, H., “Roughness and Heated Layer Effects on Shock Wave Propagation and Reflection — Experimental Results”, Rep. 24/85, Ernst Mach Institute, Freiburg, Germany, 1985.Google Scholar
  47. Richtmyer, R. D., “Progress Report on the Mach Reflection Calculation”, Rep. NYU 9764, Courant Inst., New York Univ., N.Y., U.S.A., 1961.Google Scholar
  48. Schultz-Grunow, F., “Diffuse Reflexion einer Stoßwelle”, Rep. 4/72, Ernst Mach Institute, Freiburg, Germany, 1972.Google Scholar
  49. Seeger, R. J. & Polachek, H., “Regular Reflection of Shocks in Ideal Gases”, Explos. Res. Rep. 13, Navy Dep., Bureau of Ordnance, Washington, DC, U.S.A., 1943.Google Scholar
  50. Shankar, V., Kutler, P. & Anderson, D., “Diffraction of a Shock Wave by a Compression Corner; Regular and Single Mach Reflection”, NASA TM X-73,178,1976.Google Scholar
  51. Shirouzu, M. & Glass, I.I. “An Assessment of Recent Results on Pseudo Statioinary Oblique-Shock-Wave Reflections”, UTIAS Rep. 264, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1982.Google Scholar
  52. Skews, B. W., “Profiles of Diffracting Shock Waves (an Analysis Based on Whitham’s Theory)”, Univ. Witwatersrand, Dept. Mech. Eng., Rep. 35, Johannesburg, South Africa, 1966.Google Scholar
  53. Skews, B. W., “Shock Wave Diffraction a Review”, Univ. Witwatersrand, Dept. Mech. Eng. Rep. 32, Johannesburg, South Africa, 1966.Google Scholar
  54. Skews, B. W., “The Perturbed Region Behind a Diffracting Shock Wave”, Univ. Witwatersrand, Dept. Mech. Eng. Rep. 44, Johannesburg, South Africa, 1967.Google Scholar
  55. Skews, B. W., “The Deflection Boundary Condition in the Regular Reflection of Shock Waves”, Departmental Report, McMaster Univ., Hamilton, Ontario, Canada, 1972.Google Scholar
  56. Skews, B. W., “The Effect of Angular Slipstream on Mach Reflection”, Departmental Report, McMaster Univ., Hamilton, Ontario, Canada, 1972.Google Scholar
  57. Smith, L. G., “Photographic Investigation of the Reflection of Plane Shocks in Air”, Off. Sci. Res. Dev. OSRD Rep. 6271, Washington, DC, U.S.A. or Nat. Defence Res. Committee NDRC Rep. A-350, 1945.Google Scholar
  58. Srivastava, R.S., “Diffraction of Blast Waves for the Oblique Case”, British Aero. Res. Council Rep. No. 1008, 1968.Google Scholar
  59. Suzuki, T. & Adachi, K., “Oblique Reflection of a Plane Shock on a Rough and Porous Wedge”, Ann. Rep. Japan Soc. Heat Fluid Eng., Vol. 2, pp. 23–26, 1987.Google Scholar
  60. Takayama, K. & Ben-Dor, G., “Reflection and Diffraction of Shock Waves over a Circular Concave Wall”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 51, pp. 44–87, 1986.Google Scholar
  61. Takayama, K., Miyoshi, H. & Abe, A., “Shock Wave Reflection over Gas/Liquid Interface”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 57, pp. 1–25, 1989.Google Scholar
  62. Takayama, K., Onodera, O. & Gotoh, J., “Shock Wave Reflections over a Rough Surface Wedge and a Curved Rough Surface”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 48, pp. 1–21, 1982.Google Scholar
  63. Takayama, K. & Sasaki, M., “Effects of Radius of Curvature and Initial Angle on the Shock Transition over Concave and Convex Walls”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 46, pp. 1–30, 1983.Google Scholar
  64. Takayama, K. & Sekiguchi H., “An Experiment on Shock Diffraction by Cones”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 36, pp. 53–74, 1977.Google Scholar
  65. Takayama, K. & Sekiguchi, H., “Formation and Diffraction of Spherical Shock Waves in a Shock Tube”, Rep. Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, Vol. 43, pp. 89–119, 1981.Google Scholar
  66. Tepe, F. R. Jr. & Tabakoff, W., “The Interaction of Unequal Oblique Shock Waves in a Hypersonic Flow”, Aero. Res. Lab., ARL Rep. 63–146, U.S.A.Google Scholar
  67. Urbanowicz, J. T., “Pseudo Stationary Oblique Shock Wave Reflections in Low Gamma Gases — Isobutane and Sulphur Hexafluoride”, UTIAS Tech. Note 267, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1988.Google Scholar
  68. Weynants, R. R., “An Experimental Investigation of Shock-Wave Diffraction over Compression and Expansion Corners”, UTIAS Tech. Note 126, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1968.Google Scholar
  69. Wheeler, J., “An Interferometric Investigation of the Regular to Mach Reflection Transition Boundary in Pseudostationary Flow in Air”, UTIAS Tech. Note 256, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1986.Google Scholar
  70. White, D. R., “An Experimental Survey of the Mach Reflection of Shock Waves”, Princeton Univ., Dept. Phys. Tech. Rep. 11–10, Princeton, N.J., U.S.A., 1951.Google Scholar
  71. White, D. R., “An Experimental Study of Shock Waves”, Proc. 2nd Midwest Conf. on Fluid Mech., Vol. 21, No. 3, pp. 252–263, 1952.Google Scholar
  72. Yagla, J. J., “Machine Calculation of Unsteady Mach Reflections and Prandtl-Meyer Supersonic Flows”, NWL Tech. Rep. TN-2897, 1973.Google Scholar
  73. Zhang, D. L. & Glass, I.I., “An Interferometric Investigation of the Diffraction of Planar Shock Waves over a Half Diamond Cylinder in Air”, UTIAS Rep. 322, Institute for Aerospace Studies, Univ. Toronto, Toronto, Ont., Canada, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Gabi Ben-Dor
    • 1
  1. 1.Department of Mechanical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations