Skip to main content

Shock Wave Reflections in Pseudo-Steady Flows

  • Chapter
  • 215 Accesses

Abstract

Shock waves having constant velocities with respect to an inertial frame of reference can be investigated using steady flow concepts by attaching a frame of reference to the shock wave. In such a frame of reference, the shock wave is stationary, and the entire flow field is known as either pseudo-stationary or pseudo-steady. The transformation, known as a Galilean transformation, is shown schematically in figure 2.1. In figure 2.1a a constant velocity shock wave, having a velocity of Vs, is propagating from left to right, towards a flow having a velocity Vj, and inducing behind it a flow velocity Vj. The velocities with respect to a frame of reference attached to the shock wave are shown in figure 2.1b. In this frame of reference the flow in state (i) propagates towards the stationary shock wave with the velocity Uj = Vs - Vj. Upon passing through the shock wave its velocity is reduced to u: = Vs - Vj. The velocity field shown in figure 2.1b is actually obtained from the velocity field shown in figure 2.1a by superimposing on it a velocity equal to the shock wave velocity but in the opposite direction. The flow field of figure 2.1b is pseudo-steady, and hence can be treated using the steady flow theory for oblique shock waves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ai :

local speed of sound in state (i)

Aij :

ai/aj

Cp :

specific heat capacity at constant pressure

Cv :

specific heat capacity at constant volume

hi :

enthalpy in state (i)

k:

thermal conductivity

ld :

dissociational relaxation length

lv :

vibrational relaxation length

L:

Lr/LT

LK :

horizontal distance of the kink from the leading edge of the reflecting wedge

Lr :

length of the reflected shock wave in TMR and DMR

LT :

horizontal distance of the triple point from the leading edge of the reflecting wedge

M ji :

flow Mach number in state (i) with respect to point (j)

pi :

static pressure in state (i)

Pr :

Prandtl number

Pij :

pi/pj

t:

time

Ti :

flow temperature in state (i)

ui :

flow velocity in state (i) with respect to R in RR or T in MR

u’i :

flow velocity in state (i) with respect to K in TMR or T in DMR

u’ix :

x component of u’i

uiy :

y component of u’i

V ba :

velocity of point “a” with respect to point “b”

V bax :

x component of V ba

V bay :

y component of V ba

Vij :

Vi/aj

Vi :

flow velocity in state (i) in a laboratory frame of reference

Vs :

incident shock wave velocity

x:

coordinate

Xchar :

characteristic length

y:

coordinate

γ:

specific heat capacities ratio

δ:

kinematic boundary layer thickness

γT :

thermal boundary layer thickness

γ*:

boundary layer displacement thickness

Δt :

time interval

ε:

roughness

ζ:

boundary layer displaced angle

η:

θ trw (ε)/θ trw (0)

θi :

deflection angle of the flow while passing across an oblique shock wave into state (i) with respect to R in RR or T in MR

θ’i :

deflection angle of the flow while passing across an oblique shock wave into state (i) with respect to K in TMR or T in DMR

θw :

reflecting wedge angle

θ Cw :

complementary wedge angle

θ trw :

transition wedge angle

θ trw (ε):

transition wedge angle over a surface having a roughness ε

λ:

mean free path

μ:

dynamic viscosity

ζ:

inverse pressure ratio across the incident shock wave (= P01)

ρi :

flow density in state (i)

Φi :

angle of incidence between the flow and the oblique shock wave across which the flow enters state (i) with respect to RinRRorTinMR

Φ’i :

angle of incidence between the flow and the oblique shock wave across which the flow enters state (i) with respect to K in TMR or T in DMR

χ:

first triple point trajectory angle in MR

χ’:

kink trajectory angle in TMR or second triple point trajectory angle in DMR

χg :

first triple point trajectory angle in MR at glancing incidence

ωij :

angle between the discontinuities i and j

0:

flow state ahead of the incident shock wave, i.

1:

flow state behind the incident shock wave, i.

2:

flow state behind the reflected shock wave, r.

3:

flow state behind the Mach stem, m.

4:

flow state behind the secondary Mach stem, m’.

5:

flow state behind the secondary reflected shock wave, r’

Reference

  • Bazhenova, T.V., Fokeev, V.P. & Gvozdeva, L.G., “Regions of Various Forms of Mach Reflection and Its Transition to Regular Reflection”, Acta Astro., Vol. 3, pp. 131–140, 1976.

    Article  ADS  Google Scholar 

  • Ben-Dor, G., “Regions and Transitions on Nonstationary Oblique Shock-Wave Diffractions in Perfect and Imperfect Gases”, UTIAS Rep. 232, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1978.

    Google Scholar 

  • Ben-Dor, G., “Analytical Solution of Double-Mach Reflection”, AIAA J., Vol. 18, pp. 1036–1043, 1980.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ben-Dor, G., “Relation Between First and Second Triple Point Trajectory Angles in Double Mach Reflection”, AIAA J., Vol. 19, pp. 531–533, 1981.

    Article  ADS  Google Scholar 

  • Ben-Dor, G., “A Reconsideration of the Three-Shock Theory for a Pseudo-Steady Mach Reflection”, J. Fluid Mech., Vol. 181, pp. 467–484, 1987.

    Article  ADS  MATH  Google Scholar 

  • Ben-Dor, G., “Structure of the Contact Discontinuity of Nonstationary Mach Reflections”, AIAA J., Vol. 28, pp. 1314–1316, 1990.

    Article  ADS  Google Scholar 

  • Ben-Dor, G. & Glass, I.I., “Nonstationary Oblique Shock Wave Reflections: Actual Isopycnics and Numerical Experiments”, AIAA J., Vol. 16, pp. 1146–1153, 1978.

    Article  ADS  Google Scholar 

  • Ben-Dor, G., Mazor, G., Takayama, K. & Igra, O., “The Influence of Surface Roughness on the Transition from Regular to Mach Reflection in a Pseudo-Steady Flow”, J. Fluid Mech., Vol. 176, pp. 336–356, 1987.

    ADS  Google Scholar 

  • Ben-Dor, G., Takayama, K. & Dewey, J.M., “Further Analytical Considerations of Weak Planar Shock Wave Reflections over Concave Wedges”, Fluid Dyn. Res., Vol. 2, pp. 75–85, 1987.

    Article  ADS  Google Scholar 

  • Ben-Dor, G. & Whitten, B.T., “Interferometric Technique and Data Evaluation Methods for the UTIAS 10cm× 18cm Hypervelocity Shock Tube”, UTIAS Tech. Note 208, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1979.

    Google Scholar 

  • Birkhoff, G., Hydrodynamics, A Study in Logic, Fact and Similitude, Princeton Univ. Press, N.J., U.S.A., 1950.

    MATH  Google Scholar 

  • Clarke, J.F., “Regular Reflection of a Weak Shock Wave from a Rigid Porous Wall”, Quar. J. Mech. & Math., Vol. 37, pp. 87–111, 1984a.

    Article  MATH  Google Scholar 

  • Clarke, J.F., “The Reflection of Weak Shock Waves from Absorbent Surfaces”, Proc. Roy. Soc. Lond., Ser. A., Vol. 396, pp. 365–382, 1984b.

    Article  ADS  MATH  Google Scholar 

  • Colella, P. & Henderson, L.F., “The von Neumann Paradox for the Diffraction of Weak Shock Waves”, J. Fluid Mech., Vol. 213, pp. 71–94, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  • Courant, R. & Friedrichs, K.O., Hypersonic Flow and Shock Waves, Wiley Interscience, New York, 1948.

    Google Scholar 

  • Deschambault, R.L., “Nonstationary Oblique-Shock-Wave Reflections in Air”, UTIAS Rep. 270, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1984.

    Google Scholar 

  • Dewey, J.M. & McMillin, D.J., “Observation and Analysis of the Mach Reflection of Weak Uniform Plane Shock Waves. Part 1. Observation”, J. Fluid Mech., Vol. 152, pp. 49–66, 1985.

    Article  ADS  Google Scholar 

  • Friend, W.H., “The Interaction of Plane Shock Wave with an Inclined Perforated Plate”, UTIAS Tech. Note 25, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1958.

    Google Scholar 

  • Glaz, H.M., Colella, P., Collins, J.P. & Ferguson, E., “Nonequilibrium Effects in Oblique Shock-Wave Reflection”, AIAA J., Vol. 26, pp. 698–705, 1988.

    Article  ADS  Google Scholar 

  • Henderson, L.F. & Gray, P.M., “Experiments on the Diffraction of Strong Blast Waves”, Proc. Roy. Soc. Lond., Ser. A., Vol. 377, pp. 363–378, 1981.

    Article  ADS  Google Scholar 

  • Henderson, L.F. & Lozzi, A., “Experiments on Transition of Mach Reflection”, J. Fluid Mech., Vol. 68, pp. 139–155, 1975.

    Article  ADS  Google Scholar 

  • Henderson, L.F., Ma, J.H., Sakurai, A. & Takayama, K., “Refraction of a Shock Wave at an Air-Water Interface”, Fluid Dyn. Res., Vol. 5, pp. 337–350, 1990.

    Article  ADS  Google Scholar 

  • Hornung, H.G. & Taylor, J.R., “Transition from Regular to Mach Reflection of Shock Waves. Part 1. The Effect of Viscosity on the Pseudo-Steady Case”, J. Fluid Mech., Vol. 123, pp 143–153, 1982.

    Article  ADS  Google Scholar 

  • Ikui, T., Matsuo, K., Aoki, T. & Kondoh, N., “Mach Reflection of a Shock Wave from an Inclined Wall”, Memoirs Faculty Eng., Vol. 41, pp. 361–380, Kyushu Univ., Fukuoka, Japan, 1981.

    Google Scholar 

  • Jones, D.M., Martin, P.M. & Thornhill, C.K., “A Note on the Pseudo-Stationary Flow Behind a Strong Shock Diffracted or Reflected at a Corner”, Proc. Roy. Soc. Lond., Ser. A., Vol. 209, pp. 238–248, 1951.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Law, C.K. & Glass, I.I., “Diffraction of Strong Shock Waves by a Sharp Compressive Corner”, CASI Trans., Vol. 4, pp. 2–12, 1971.

    Google Scholar 

  • Lee, J. H. & Glass, I.I., “Pseudo-Stationary Oblique-Shock-Wave Reflections in Frozen and Equilibrium Air”, Prog. Aerospace Sci., Vol. 21, pp. 33–80, 1984.

    Article  ADS  Google Scholar 

  • Mach, E., “Uber den Verlauf von Funkenwellen in der Ebeme und im Raume”, Sitzungsbr. Akad. Wiss. Wien, Vol. 78, pp. 819–838, 1878.

    Google Scholar 

  • Mirels, H., “Mach Reflection Flowfields Associated with Strong Shocks”, AIAA J., Vol. 23, pp. 522–529, 1985.

    Article  ADS  Google Scholar 

  • Onodera, H., “Shock Propagation over Perforated Wedges”, M.Sc. Thesis, Inst. High Speed Mech., Tohoku Univ., Sendai, Japan, 1986.

    Google Scholar 

  • Onodera, H. & Takayama, K., “Shock Wave Propagation over Slitted Wedges”, Inst. Fluid Sci. Rep., Vol. 1, pp. 45–66, Tohoku Univ., Sendai, Japan, 1990.

    Google Scholar 

  • Reichenbach, H., “Roughness and Heated Layer Effects on Shock-Wave Propagation and Reflection — Experimental Results”, Ernst Mach Inst., Rep. E24/85, Freiburg, West Germany, 1985.

    Google Scholar 

  • Schmidt, B., “Structure of Incipient Triple Point at the Transition from Regular Reflection to Mach Reflection”, in Rarefied Gas Dynamics: Theoretical and Computational Techniques, Eds. E.P. Muntz, D.P. Weaver & D.H. Campbell, Progress in Astronautics and Aeronautics, Vol. 118, pp. 597–607, 1989.

    Google Scholar 

  • Shames, I.H., Mechanics of Fluids , McGraw Hill, 2nd Ed., 1982.

    Google Scholar 

  • Shirouzu, M. & Glass, I.I., “An Assessment of Recent Results on Pseudo-Steady Oblique Shock-Wave Reflection”, UTIAS Rep. 264, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1982.

    Google Scholar 

  • Shirouzu, M. & Glass, I.I., “Evaluation of Assumptions and Criteria in Pseudo-Stationary Oblique Shock-Wave Reflections”, Proc. Roy. Soc. Lond., Ser. A., Vol. 406, pp. 75–92, 1986.

    Article  ADS  Google Scholar 

  • Skews, B.W., “The Flow in the Vicinity of a Three-Shock Intersection”, CASI Trans., Vol. 4, pp. 99–107, 1971.

    Google Scholar 

  • Skews, B.W., “The Effect of an Angular Slipstream on Mach Reflection”, Departmental Note, McMaster Univ., Hamilton, Ont., Canada, 1971/2.

    Google Scholar 

  • Smith, L.G., “Photographic Investigation of the Reflection of Plane Shocks in Air”, OSRD Rep. 6271, Off. Sci. Res. Dev., Washington, DC., U.S.A., or NORC Rep. A-350, 1945.

    Google Scholar 

  • Takayama, K. & Ben-Dor, G., “Pseudo-Steady Oblique Shock-Wave Reflections over Water Wedges”, Exp. in Fluids, Vol. 8, pp. 129–136, 1989.

    Article  ADS  Google Scholar 

  • Takayama, K., Miyoshi, H. & Abe, A., “Shock Wave Reflection Over Gas/Liquid Interface”, Inst. High Speed Mech. Rep., Vol. 57, pp. 1–25, Tohoku Univ., Sendai, Japan, 1989.

    Google Scholar 

  • Wheeler, J., “An Interferometric Investigation of the Regular to Mach Reflection Transition Boundary in Pseudo-Stationary Flow in Air”, UTIAS Tech. Note 256, Inst. Aero. Studies, Univ. Toronto, Toronto, Ont., Canada, 1986.

    Google Scholar 

  • White, D.R., “An Experimental Survey of the Mach Reflection of Shock Waves”, Princeton Univ., Dept. Phys., Tech. Rep. II-10, Princeton, N.J., U.S.A., 1951.

    Google Scholar 

  • Zaslayskii, B.I. & Safarov, R.A., “Mach Reflection of Weak Shock Waves From a Rigid Wall”, Zh. Prik. Mek. Tek. Fiz., Vol. 5, pp. 26–33, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Dor, G. (1992). Shock Wave Reflections in Pseudo-Steady Flows. In: Shock Wave Reflection Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4279-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4279-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4281-7

  • Online ISBN: 978-1-4757-4279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics