Advertisement

P2 Dans Les Petits Intervalles

Part of the Progress in Mathematics book series (PM, volume 102)

Résumé

On note P 2 un entier ayant au plus deux facteurs premiers, et on considère ici le problème de la localisation des P 2 dans les petits intervalles c’est-à-dire de la recherche des réels θ tels que:
$$Pour\;x\; \geqslant \;{x_0}\;(\theta )\;l'\operatorname{int} ervalle\;(x - {x^\theta },x]\;contient\;au\;moins\;un\;{P_2}.$$
(1.1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J.R Chen. — On the distribution of almost primes in an Interval, Sci. Sinica 18, (1975), 611 - 627.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J.R. Chen. — On the distribution of almost primes in an interval (II), Sci. Sinica 22, (1979), 253 - 275.MathSciNetzbMATHGoogle Scholar
  3. [3]
    E. Fouvry. — Nombres presques premiers dans les petits intervalles, Analytic Number Theory (Proceedings Tokyo, 1988), LNM 1434, Springer Verlag.Google Scholar
  4. E. Fouvry et H. Iwaniec. — Exponential sums for monomials, J. of Number Theory 33, (1989), 311-333.Google Scholar
  5. [5]
    H. Halberstam, D.R. Heath-Brown et H.-E. Richert. — Almost-primes in short intervals, Recent Progress in Analytic Number Theory, Academic Press 1, (1981), 69 - 101.MathSciNetGoogle Scholar
  6. [6]
    H. Halberstam et H.-E. Richert. — Weighted sieves, Publications Mathématiques d’Orsay, 88–03, Colloque Hubert Delange 7 et 8, (1982), 97 - 114.Google Scholar
  7. [7]
    H. Halberstam et H.-E. Richert. — A weighted sieve of Greaves’ type II, Elementary and Analytic Theory of Numbers, Banach Center Publication 171, (1985), 183 - 215.MathSciNetGoogle Scholar
  8. [8]
    D.R Heath-Brown. — The Pjateckii-Sapiro prime number theorem, J. of Number Theory 16, (1983), 242 - 266.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M.N. Huxley et N. Wait. — Exponential sums and the Riemann zeta function, Proc. London Math. Soc.(3) 57, (1988), 1 - 24.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Iwaniec. — A new form of the error term in the linear sieve, Acta Arith. 37, (1980), 37 - 56.MathSciNetGoogle Scholar
  11. [11]
    H. Iwaniec et M. Laborde. — P2 in short intervals, Ann. Inst. Fourier 31, (1981), 37 - 56.MathSciNetCrossRefzbMATHGoogle Scholar
  12. W.B. Jurkat et H.-E. Richert. — Improvement of Selberg’s sieve method I, Acta. Arith. 11, (1965), 217-240.Google Scholar
  13. [13]
    M. Laborde. — Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3ème cycle, Université de Paris-Sud, 1978.Google Scholar
  14. [14]
    W.Z. Wo. — Formes bilinéaires de termes d’erreur pour les petits intervalles (en chinois), Acta Math. Sinica 32, (1989), 86 - 96.Google Scholar
  15. [15]
    H.-E. Richert. — Selberg’s sieve with weights, Mathematika 16, (1969), 1 - 22.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    E.C. Titchmarsh. — The theory of the Riemann zeta-function, second edition, Oxford University Press, 1986.Google Scholar
  17. [17]
    RC. Vaughan. —An elementary method in prime number theory, Acta Arithmetica 37, (1980), 111 - 115.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Y. Wang. — On sieve methods and some of their applications, Scient. Sinica 11, (1962), 1607 - 1624.zbMATHGoogle Scholar
  19. [19]
    J. Wu. — Nombres B-libres dans les petits intervalles (à paraître).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jie Wu
    • 1
  1. 1.Département de MathématiquesUniversité de Nancy 1Vandoeuvre Les Nancy CedexFrance

Personalised recommendations