Advertisement

La Racine 12-ième Canonique de Δ(L)[L:L]/Δ(L)

  • Gilles Robert
Part of the Progress in Mathematics book series (PM, volume 102)

Abstract

Suppose that the lattices L and L are such that i) LL and ii) the index [L: L] is prime to 6.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    C. Goldstein et N. Schappacher. — Séries d’Eisenstein et fonctions L de courbes elliptiques à multiplication complexe, J. reine angew. Math. 327, (1981), 184 - 218.MathSciNetzbMATHGoogle Scholar
  2. [2]
    K. Ramachandra. — Some applications of Kronecker’s limit-formulas, Ann. of Math. 80, (1964), 104 - 148.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    G. Robert. — Unités elliptiques, Bull. Soc. Math. France, Mémoire 36, 1973.Google Scholar
  4. [4]
    G. Robert. — Nombres de Hurwitz et unités elliptiques, Ann. Sci. École Norm. Sup.(4) 11, (1978), 297 - 389.Google Scholar
  5. [5]
    G. Robert. — Concernant la relation de distribution satisfaite par la fonction cp associée à un réseau complexe, Invent. math. 100, (1990), 231 - 257.Google Scholar
  6. [6]
    G. Robert. — Multiplication complexe et lois de réciprocité, Max Plank Institut Bonn, 1989.Google Scholar
  7. [7]
    G. Robert. — Unités de Stark comme unités elliptiques, Prépubl. Institut Fourier, Grenoble n° 143, déc. 1989.Google Scholar
  8. [8]
    R Schertz. — Niedere Potenzen elliptischer Einheiten, Proc. Int. Conf. on Class Numbers and Fundamental Units, Japan, Katata, (1986), 67 - 88.Google Scholar
  9. [9]
    J.-P. Serre. — Cours d’arithmétique, P.U. France, 1970.Google Scholar
  10. [10]
    G. Shimura. — Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten et Princeton U.P., 1971.Google Scholar
  11. [11]
    G. Shimura. — Nearly holomorphic functions on Hermitian symmetric spaces, Math. Ann. 278, (1987), 1 - 28.Google Scholar
  12. [12]
    C.L. Siegel. —A simple proof of 7l(-1/r) = q(r) rli, Mathematika 1 (1954) 4, cf. Op. Sc. vol. III n° 62.Google Scholar
  13. [13]
    C.L. Siegel. — Lectures notes on advanced analytic number theory, Tata Inst. of Fund. Research, Bombay, 1961.Google Scholar
  14. [14]
    H.M. Stark. — L-functions at s = 1, IV, First derivatives at s = 0, Advances in Math. 35, (1980), 197 - 235.Google Scholar
  15. [15]
    A. Weil. — Introduction à l’étude des variétés Kählériennes, Hermann, Paris, 1957.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Gilles Robert
    • 1
  1. 1.Institut FourierSt Martin d’hères CedexFrance

Personalised recommendations