Advertisement

Ideal Class Groups and Galois Modules

  • Wen-Ch’ing Winnie Li
Part of the Progress in Mathematics book series (PM, volume 102)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    H. Bauer. — Uber die kubischen Klassenkörper zyklischer kubischer Zahlkörper, Ph. D. Dissertation, Karlsruhe UniversitAt, 1970.Google Scholar
  2. [C]
    C. Chevalley. — Sur la théorie du corps de classes dans les corps finis et les corps locaux, J. Fac. Sci. Univ. Tokyo, vol. II, Part. 9, 1933.Google Scholar
  3. [F]
    L.J. Federer. — Genera theory for S-class groups, Houston J. Math. 12 4, (1986), 497–502.MathSciNetGoogle Scholar
  4. [Gi]
    Gil R Gillard. — Sur la structure galoisienne de certains groupes de classes, Proc. Int. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata 1986), Nagoya University, Nagoya (1986), 99–107.Google Scholar
  5. [Gr]
    G. Gras. — Sur les Q-classes d’idéaux dans les extensions cycliques relatives de degré premier 2, Ann Inst. Fourier, Grenoble 23, 3 (1973), 1–48 et 23, 4 (1973), 1–44.MathSciNetCrossRefGoogle Scholar
  6. [HL]
    A. Harnchoowong and W.-C. W. U. — Sylow subgroups of ideal class groups with moduli, J. Number Theory 36, n ° 3, (1990), 354–372.Google Scholar
  7. [Ha]
    H. Hasse. —An algorithm for determining the structure of the 2-Sylow-subgroup of the divisor class group of a quadratic number field, Symposia Mathematica, Academic Press, London 15, (1975), 341–352.MathSciNetGoogle Scholar
  8. [Ho]
    M. Horie. — On the genus field in algebraic number fields, Tokyo J. Math. 6, n ° 2, (1983), 363–380.Google Scholar
  9. I] E. Inaba. — Uber die Structur der L-klassengruppe zyklischer Zahlkörper von prlmzahlgrad L, J. Fac. Sci. Univ. Tokyo Sect. I4 (1940), 61–115.Google Scholar
  10. [J1]
    J.-F. Jaulent. — L’arithmétique des f-extensions, Publ. Math. de la Faculté des Sciences de Besançon, Théorie des Nombres, 1986.Google Scholar
  11. [J2]
    J.-F. Jaulent. — S-classes infinitésimales d’un corps de nombres algébriques, Ann. Sci. Inst. Fourier 34, (1984), 1–27.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [M]
    P. Morton. — On Rédei’s theory of the Pe11 equation, J. reine angew. Math. 307–308, (1978), 373–398.MathSciNetGoogle Scholar
  13. [R]
    L. Rédei. — Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleischung, Acta Math. Acad. Sci. Hung. 4, (1953), 31–87.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Wen-Ch’ing Winnie Li
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations