Physical and Chemical Properties of Pyrethroids

  • Dennis A. Laskowski
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 174)

Abstract

Agrochemicals undergo analyses of exposure concentrations and persistence to assess the potential impact of the chemicals from release into the environment. The estimates of exposure are compared with relevant toxicity data to characterize the potential risk to classes of organisms undergoing risk analysis. Under regulatory processes in the United States and the European Union, the predictions of exposure are developed from exposure models of varying complexity, using the measurements of an agrochemical’s physical and chemical properties as model input. It is necessary to have knowledge of these properties so that assessment of potential risk can be completed.

Keywords

Water Solubility Anaerobic Degradation Bioconcentration Factor Natural Sunlight Dark Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrevo a (unknown date) RU 25474: study on the hydrolysis. AgrEvo report A73713.Google Scholar
  2. Agrevo b (unknown date) Untitled. AgrEvo report A74007; EPA MRID 099741.Google Scholar
  3. Allsup TL (1976) Hydrolysis of FMC 33297 insecticide. FMC report W-0103. EPAGoogle Scholar
  4. Alvarez M (1989) Permethrin: physical properties. FMC report P-2242, EPA MRID 42109801.Google Scholar
  5. Alvarez M (1991a) Physical properties of FMC 56701. FMC report P-2595, EPA MRID # 41968203. EPAGoogle Scholar
  6. Alvarez M (199 lb) Physical properties of cypermethrin. FMC report P-2594, EPA MRID 41887003. EPAGoogle Scholar
  7. Alvarez M (1995) Zetacypermethrin: octanol-water partition coefficient. FMC report P-3040.Google Scholar
  8. Amos R, Donelan RB (1987) Permethrin: photolysis in sterile water at pH 5. Zeneca report RJ0577B; EPA MRID 40242801. U.S. Environmental Protection Agency.Google Scholar
  9. Baldwin MK, Lad D (1978) The accumulation and elimination of WL 43467 by the rainbow trout (Salmo gairdneri). Zeneca report Shell TLGR. 0041. 78.Google Scholar
  10. Bennett D (1981) The accumulation, distribution and elimination of RIPCORD by rainbow trout using a continuous-flow procedure. Zeneca report; Shell report SBGR. 81.026. ShellGoogle Scholar
  11. Bharti H, Bewick DW, White RD (1985) PP563 and PP321: degradation in soil. Zeneca report RJ 0382B.Google Scholar
  12. Bixler TA, Gross E, Willow E (1983) FMC 54800 aerobic soil degradation. FMC report P-0712; EPA MRID 532540.Google Scholar
  13. Bowman B, Carpenter M (1987) Determination of photodegradation of 14C-deltamethrin in aqueous solution. AgrEvo report A41919; EPA MRID 40254101.Google Scholar
  14. Briggs G (1999) Personal communication. AgrEvoGoogle Scholar
  15. Brown PM, Leahey JP (1987) Permethrin: photolysis on a soil surface. Zeneca report RJ0581B; EPA MRID 40190101.Google Scholar
  16. Burgess D (1989) Uptake, depuration and bioconcentration of 14C-permethrin by bluegill sunfish (Lepomis macrochirus). FMC report PC-0117; EPA MRID 41300401.Google Scholar
  17. Burhenne J (1996) Adsorption/desorption of cyfluthrin on soils. Bayer report 107397. BayerGoogle Scholar
  18. Carlisle JC, Roney DJ (1984) Bioconcentration of cyfluthrin ( BAYTHROID) by bluegill sunfish. Bayer report 86215.Google Scholar
  19. Castle S, Shepler K, Ruzo LO (1990) Photodegradation of [14C]esfenvalerate in/on soil surface by natural sunlight. DuPont report AMR-1798–90. DuPontGoogle Scholar
  20. Cheng HM (1986) Characterization of 14C residues in bluegill sunfish treated with 14Cfenpropathrin (revised). Valent report 9109227.Google Scholar
  21. Chopade HM (1986) Photodecomposition of [14C] BAYTHROID on soil. Bayer report 88981.Google Scholar
  22. Christensen KP (1993) Deltamethrin: determination of the sorption and desorption properties. AgrEvo report A73876; EPA MRID 42976501.Google Scholar
  23. Clifton JL (1992) Environmental fate studies: hydrolysis studies of cypermethrin in aqueous buffered solutions. FMC report P-2771; EPA MRID 42620501.Google Scholar
  24. Collis WMD, Leahey JP (1984) PP321: hydrolysis in water at pH 5, 7, and 9. Zeneca report RJ0338B.Google Scholar
  25. Concha MA, Ruzo LO, Shepler K (1992a) Photodegradation of [14C-acid] and [14C-alcohol] fenpropathrin in/on soil by natural sunlight. Valent report 9200548; EP 4254 6402.Google Scholar
  26. Concha MA, Shepler K, Ruzo LO (1992b) Hydrolysis of [14C-acid] and [14C-alcohol]fenpropathrin at pH 5, 7 and 9. Valent report 9200714; EPA 141320253931.Google Scholar
  27. Cranor W (1990) Aerobic soil metabolism of [benzyl-“C]-fenpropathrin. Valent report 9004803C; EPA MRID 42525902.Google Scholar
  28. Curl EA, Leahey JP, Lloyd SJ (1984a) PP321: aqueous photolysis at pH 5. Zeneca report RJ0362B.Google Scholar
  29. Curl EA, Leahey JP, Lloyd S (1984b) PP321: photodegradation on a soil surface. Zeneca report RJ0358B.Google Scholar
  30. Daly D (1989) Soil/sediment adsorption-desorption with “C-tralomethrin. AgrEvo report A72678.Google Scholar
  31. Daly D, Williams M (1990) Anaerobic soil metabolism of 14C-fenpropathrin. Valent report 9200549; EPA MRID 42546403.Google Scholar
  32. Davis ML (1991) Sorption/desorption of “C-permethrin on soils by the batch equilibrium method. FMC report PC-0156; EPA MRID 41868001.Google Scholar
  33. Devaux PH, Bolla P (1984) Photodegradation of tralomethrin in water. AgrEvo report A72969.Google Scholar
  34. Ehman A, Ingamells JM (1981) Photodegradation of SD 43775 on soil thin layers. DuPont report RIR–22–002–81.Google Scholar
  35. Elmarakby SA (1998) Aerobic aquatic metabolism of “C-zeta-cypermethrin. FMC report P-3312.Google Scholar
  36. Estigoy L, Ruzo LO, Shepler K (1991a) Photodegradation of [“C-acid]- and [14C-alcohol]-cypermethrin in/on soil by natural sunlight. FMC report PC-0159; EPA MRID 42129001.Google Scholar
  37. Estigoy L, Ruzo LO, Shepler K (199 lb) Photodegradation of [’4C-acid] and [14C-alcohol] cypermethrin in buffered aqueous solution at pH 7 by natural sunlight. FMC report PC-0163; EPA MRID 42141501.Google Scholar
  38. Fackler PH (1990) Deltamethrin: bioconcentration and elimination of 14C residues by bluegill (Lepomis macrochirus). AgrEvo report A47117; EPA MRID 41651040.Google Scholar
  39. Forbis AD (1985) Uptake, depuration and bioconcentration of [cyclopropy1–1–14C] and benzyl–l–14C] fenpropathrin by bluegill sunfish (Lepomis macrochirus). Valent report 9109227; EPA MRID 161672.Google Scholar
  40. Froelich LW (1983) Soil adsorption/desorption characteristics of FMC 54800. FMC report P-0797; EPA MRID 141203.Google Scholar
  41. Froelich LW (1991) Soil mobility studies: adsorption/desorption studies of cypermethrin. FMC report P-2658; EPA MRID 42129003.Google Scholar
  42. Gaddamidi V, Bookhart SW III (1992) Anaerobic soil metabolism of esfenvalerate. DuPont report AMR 2075–91.Google Scholar
  43. Gargot A (1994) Tralomethrin: determination of the octanol/water partition coefficient. AgrEvo report A74128.Google Scholar
  44. Giroir LE, Stuerman L (1993) [14C]Cypermethrin bioconcentration by bluegill sunfish (Lepomis macrochirus). FMC report PC-0189; EPA MRID 42868203.Google Scholar
  45. Goggin U, Gentle W, Hamer MJ, Lane M CG (1996) Cypermethrin: adsorption and desorption properties in sediment. Zeneca report RC0004.Google Scholar
  46. Grayson BT, Langner E, Wells D (1982) Comparison of two gas saturation methods for the determination of the vapour pressure of cypermethrin. Pestic Sci 13: 552–556.CrossRefGoogle Scholar
  47. Grelet D (1990) Deltamethrin: active Ingredient. Summary of physical and chemical characteristics. AgrEvo report A70742; EPA MRID 41651003.Google Scholar
  48. Gronberg RR (1984) Photodecomposition of [phenyl-UL-“C] BAYTHROID in aqueous solution by sunlight. Bayer report 88598.Google Scholar
  49. Gronberg RF (1987) Adsorption of BAYTHROID to sandy loam. Bayer report 94541.Google Scholar
  50. Hall JS, Leahey JP (1983) Cyhalothrin: fate in river water. Zeneca report RI 0320B.Google Scholar
  51. Hand LH (2000) Permethrin: adsorption and desorption properties in four soils. Zeneca technical letter 00JH005/01 (interim report).Google Scholar
  52. Hansch C, Leo A (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York.Google Scholar
  53. Harvey BR, Zinner CM, White RD, Hill IR (1981) Cypermethrin: degradation in soil in the laboratory. Zeneca report RJ 0162 B.Google Scholar
  54. Hawkins B, Kirkpatrick D, Shaw D, Riseborough J (1991a) The effect of application rate and soil moisture content on the rate of degradation of 14C-permethrin in aerobic sandy loam soil. FMC report HRC/ISN 247/91296; EPA MRID 41970602.Google Scholar
  55. Hawkins B, Kirkpatrick D, Shaw D, Riseborough J (1991b) The metabolism of 14Cpermethrin in sandy loam soil under anaerobic conditions. FMC report HRC/ISN 236/ 91107; EPA MRID 41970601.Google Scholar
  56. Hawkins DR, Kirkpatrick D, Shaw D, Nicholson J (1992) The aerobic soil metabolism of 14C-permethrin. FMC report HRC/ISN 251/911499; EPA MRID 42410002.Google Scholar
  57. Hellpointner E (1990) Determination of the quantum yield and assessment of the environmental half-life of the direct photodegradation of cyfluthrin in water. Bayer report 103228.Google Scholar
  58. Herbst RM (1983a) Water solubility of FMC 54800. FMC report P-0699; EPA MRID 251725.Google Scholar
  59. Herbst RM (1983b) Octanol water partition coefficient of FMC 54800. FMC report P068; EPA MRID 251725.Google Scholar
  60. Herbst RM (1983c) Hydrolysis of FMC 54800. FMC report P-0701; EPA MRID 132539.Google Scholar
  61. Itoh K, Kodaka R, Kumada K, Nambu K, Kato T (1995) Aerobic soil metabolism of esfenvalerate and fenvalerate in European soils. DuPont report LLM-50–0039.Google Scholar
  62. Jalai-Araghi K, Ruzo LO, Shepler K (1992) Photodegradation of [14C-acid] and [14C- alcohol] fenpropathrin in a buffered aqueous solution at pH 5 by natural sunlight. Valent report 9200547; EPA 42546402.Google Scholar
  63. Kaman RA (1994) An anaerobic aquatic soil metabolism study with [cyclopropy1–1–14C] fenpropathrin. Valent report 9600477; EPA MRID 44370004.Google Scholar
  64. Kaman RA (1995) An anaerobic aquatic soil metabolism study with [phenoxyphenyl14C]-fenpropathrin. Valent report 9600477; EPA MRID 44370003.Google Scholar
  65. Kaufman DD, Kayser AJ, Russell BA (date unknown a) Degradation of the synthetic pyrethroid insecticide RU-25474 in soil. AgrEvo report A73235.Google Scholar
  66. Kaufman DD, Kayser AJ, Doyle EH, Munitz T (date unknown b) Degradation of 14C- methylene-and 14C-gem-methyl-tralomethrin in three soils. AgrEvo report A72967.Google Scholar
  67. Kaufman DD, Kayser Ai, Doyle EH, Munitz T (date unknown c) Anaerobic degradation of 14C-gem-methyl and 14C-methylene tralomethrin in flooded soil. AgrEvo report A72965.Google Scholar
  68. Kaufman DD, Kayser AJ, Russell B, Barnett EA (1990a) The effect of soil temperature on the degradation of 14C-cyano-decamethrin in soil. AgrEvo report A71051; EPA MRID 41677405.Google Scholar
  69. Kaufman DD, Kayser AJ, Russell B, Barnett EA (1990b) Degradation of 14C-phenoxyand 14C-cyano-decamethrin in soil. AgrEvo report A71064; EPA MRID 41677404. Krohn J ( 1983a ) Properties of pesticides in water. Bayer report 85986.Google Scholar
  70. Krohn J (1983b) Water solubility of cyfluthrin. Bayer report 86626.Google Scholar
  71. Krohn J (1987a) Octanol water partition coefficient of cyfluthrin pure active ingredient. Bayer report 94669.Google Scholar
  72. Krohn J (1987b) Water solubility of cyfluthrin pure active ingredient. Bayer report 94668.Google Scholar
  73. Krohn J (1988) Water solubility of cyfluthrin K+L [FCR 4545]. Bayer report 98320.Google Scholar
  74. Lee DY (1992) Adsorption and desorption of fenpropathrin to soils. Valent report 9200731; EPA 42584101.Google Scholar
  75. Lee P (1979) Twelve months aerobic soil metabolism of 14C-chlorophenyl-SD43775. DuPont report AMR-1578–89, Appendix I.Google Scholar
  76. Lee P, Stackhouse SC (1979) Comparative aerobic metabolism of 14C-chlorophenyl-SD 43775 in sterilized and nonsterilized Hanford sandy loam soil. DuPont report AMR-1578–89, Appendix I V.Google Scholar
  77. Lee P, Stearns S, Powell W (1985) Comparative aerobic soil metabolism of SD 43775 (racemic) and SD 47443 (A-alpha). DuPont report AMR-1578–89, Appendix V; EPA MRID 00146578.Google Scholar
  78. Lee PW (1985) Fate of fenvalerate (Pydrin insecticide) in the soil environment. DuPont report AMR-1578–89, Appendix V II.Google Scholar
  79. Lee PW (1988) Hydrolysis of [chlorophenyl-14C] DPX-GB800 in buffer solutions of pH 5, 7, and 9. DuPont report AMR-1185–88.Google Scholar
  80. Lee PW (1990) Bioaccumulation of fenvalerate in fish. DuPont report AMR-1827–90.Google Scholar
  81. Lewis CJ (1995) (14C)-Esfenvalerate: biodegradation in natural water-sediment systems at 10 °C. DuPont report LLM-51–0040.Google Scholar
  82. Lorence PJ (1991) Fenpropathrin: determination of vapor pressure. Valent report 9200342.Google Scholar
  83. Lorence PJ (1996) Fenpropathrin (S-3206): water solubility. Valent report 9600092; EPA MRID 44370001.Google Scholar
  84. Lucas T (1998) Final report. [14C1-zeta cypermethrin: aerobic aquatic degradation in two water/sediment systems. FMC report PC-0298.Google Scholar
  85. Marriott SH, Duley J, Hand L (1998) Lambda-cyhalothrin: degradation in water—sediment systems under laboratory conditions. Zeneca report RJ 2640B.Google Scholar
  86. Mikami N, Takahashi N, Hayashi K, Miyamoto J (1980) Photodegradation of fenvalerate ( Sumicidin) in water and on soil surface. J Pestic Sci 5: 225–236.Google Scholar
  87. Mikami N, Sakata S, Yamada H, Miyamoto J (1983) Degradation of fenpropathrin in soil. Valent report 9300185; EPA 126823249936.Google Scholar
  88. Mikami N, Sakata S, Yamada H (1984a) Further studies on degradation of the pyrethroid insecticide fenvalerate in soils. DuPont report AMR-1578–89, Appendix V I.Google Scholar
  89. Mikami N, Sakata S, Yamada H (1984b) The response to EPA’s requirement concerning soil studies of fenpropathrin (Danitol): data on degradation in soils under aerobic conditions at shorter time points. Valent report 9102225; EPA 137768252780.Google Scholar
  90. Moffatt F (1994a) Cypermethrin: quantum yield and environmental half-life for direct phototransformation in aqueous solution. Zeneca report RJ1667B.Google Scholar
  91. Moffatt F (1994b) Lambda-cyhalothrin: environmental half-life and quantum yield for direct phototransformation in aqueous solution. Zeneca report RJ1617B.Google Scholar
  92. Muller K, Goggin U, Lane MCG (1996) Lambda-cyhalothrin: adsorption and desorption in soil and sediment. Zeneca report RJ 1913BGoogle Scholar
  93. Muttzall PI (1993) Water/sediment biodegradation of [benzyl-14C] deltamethrin. AgrEvo report A50953.Google Scholar
  94. Ohkawa H, Nambu K, Inui H (1978) Metabolic fate of fenvalerate (Sumicidin) in soil and by soil microorganisms. DuPont report AMR-1578–89, Appendix I II.Google Scholar
  95. Parker S, Leahey JP (1986) PP321: photodegradation on a soil surface. Zeneca report RJ0537B.Google Scholar
  96. Pepin M, Gargot A (1988) Tralomethrin solubility study in water. AgrEvo report A73322.Google Scholar
  97. Pionke HB, DeAngelis RJ (1980) Method for distributing pesticide loss in field runoff between the solution and adsorbed phase. In: Knisel WG (ed) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. Report 26, Chapter 19. U.S. Department of Agriculture Conservation, Washington, DC.Google Scholar
  98. Potter JC, Arnold DL (1980) Twelve-month aerobic soil metabolism of 14C-phenoxyphenyl SD 43775. DuPont report AMR-1578–89, Appendix I I.Google Scholar
  99. Priestley DB, Leahey JP (1988) PP321: aqueous photolysis at pH 5. Zeneca report RJ0605B.Google Scholar
  100. Puhl RI, Hurley JB, Dime RA (1983) Photodecomposition of BAYTHROID 14C in aqueous solution and on soil. Bayer report 86182.Google Scholar
  101. Ramsey AA (1991a) Environmental fate studies: aerobic soil metabolism of cypermethrin in a sandy loam soil. FMC report P-2616; EPA MRID 42156601.Google Scholar
  102. Ramsey AA (1991b) Environmental fate studies: anaerobic soil metabolism of cypermethrin in a sandy loam soil. FMC report P-2617; EPA MRID 42156602.Google Scholar
  103. Ramsey AA (1998) Anaerobic aquatic metabolism of 14C-zeta-cypermethrin. FMC report P-3329.Google Scholar
  104. Rapley JH, Arnold DJ, Vincent J (1981) Cypermethrin: degradation in river and pond waters and sediments. Zeneca report RJ 0175B.Google Scholar
  105. Rekker R (1977) The Hydrophobic Fragmental Constant. Elsevier, Amsterdam.Google Scholar
  106. Reynolds JL (1984) Aerobic soil metabolism of FMC 54800: fate of acid cyclopropyl ring)-14C FMC 54800 and metabolite characterization. FMC report P-0872; EPA MRID 141202.Google Scholar
  107. Reynolds JL (1986) Metabolism of acid (cyclopropyl ring)-14C and alcohol (phenyl ring)-14C FMC 54800 in soil under anaerobic conditions. FMC report P-1338; EPA MRID 264642.Google Scholar
  108. Roberts TR, Standen ME (1976) The degradation of the insecticide WL 41706 in soil under laboratory conditions. Valent report 9300185; EPA 130868126822.Google Scholar
  109. Saito S, Itoh K (1992) Water solubility of fenpropathrin. Valent report 9200341; EPA MRID 424998–01Google Scholar
  110. Sandie FE (1983) Hydrolysis of BAYTHROID in sterile, aqueous buffered solutions. Bayer report 86051.Google Scholar
  111. Schocken MJ (1993) Deltamethrin: bioconcentration exposure with bluegill sunfish (Lep-omis macrochirus) and identification of resulting metabolites. AgrEvo report A70918; EPA MRID 43072701.Google Scholar
  112. Sewekow B (1981) Determination of vapor pressure of cyfluthrin. Bayer report 86627.Google Scholar
  113. Shelby DJ (1996) Report amendment to: Adsorption and desorption of fenpropathrin to soils MRID 42584101. Valent report 9600478; EPA MRID 44370002.Google Scholar
  114. Smith AM (1990a) Determination of aqueous hydrolysis rate constant and half-life of deltamethrin. AgrEvo report A43049; EPA MRID 41651038.Google Scholar
  115. Smith AM (1990b) Determination of the adsorption and desorption coefficients of deltamethrin. AgrEvo report A47159; EPA MRID 41651039.Google Scholar
  116. Stevenson IE (1987) Photodegradation of [chlorophenyl (U)-14C]DPX-GB800 in water at pH 5. DuPont report AMR-868–87.Google Scholar
  117. Suprenant DC (1986) Accumulation and elimination of 14C-residues by bluegill (Lepomis machrochirus) exposed to 14C-FMC 54800. FMC report PC-0038; EPA MRID 264642.Google Scholar
  118. Swaine H, Hayward GJ (1979) Cypermethrin: laboratory degradation on two standard soils, Part I. Zeneca report RJ 0115B.Google Scholar
  119. Takahashi N, Mikami N, Yamada H, Miyamoto J (1983a) Photodegradation of fenpropathrin in water, and on soil and plant foliage. Valent report 9200622.Google Scholar
  120. Takahashi N, Mikami N, Yamada H, Miyamoto J (1983b) Hydrolysis of fenpropathrin in aqueous media. Valent report 9200620; EPA 131438251415.Google Scholar
  121. Takimoto Y, Ohshima M, Matsuda T, Miyamoto J (1985) Accumulation and metabolism of [benzyl-l-14C1-fenpropathrin in carp (Cyprinus carpio). Valent report 9109227; EPA MRID 153802.Google Scholar
  122. Talbot TD, Mosier B (1987) Vapor pressure of BAYTHROID pure active ingredient. Bayer report 94330.Google Scholar
  123. Tillier C (1993) RU 25474: determination of vapor pressure. AgrEvo report A74125.Google Scholar
  124. Tomlin C (1994) The Pesticide Manual, 10th Ed. British Crop Protection Council and Royal Society of Chemistry, United Kingdom.Google Scholar
  125. Valent (1983) Partition coefficient (n-octanol/water) of fenpropathrin. Valent report 9102150.Google Scholar
  126. Wagner K, Neitzel H, Oehlmann L (1983) Decomposition of BAYTHROID in soil under aerobic and anaerobic conditions. Bayer report 86052.Google Scholar
  127. Wang WW (1990a) Soil photolysis of 14C-tralomethrin. AgrEvo report A72955.Google Scholar
  128. Wang WW (1990b) Aerobic soil metabolism of 14C-tralomethrin. AgrEvo report A72956.Google Scholar
  129. Wang WW (1990c) Hydrolysis of 14C-tralomethrin in water at pH 4, pH 5, pH 7, and pH 9. AgrEvo report A45108.Google Scholar
  130. Wang WW (1990d) Anaerobic soil metabolism of ‘4C-tralomethrin. AgrEvo report A72957.Google Scholar
  131. Wang WW (1991a) Aqueous photolysis of 14C-tralomethrin. AgrEvo report A72954. Wang WW (199 lb) Anaerobic metabolism of 14C-deltamethrin. AgrEvo report A47918; EPA MRID 42114821.Google Scholar
  132. Wang WW (199lc) Aerobic soil metabolism of 14C deltamethrin. AgrEvo report A47917; EPA MRID 42114820.Google Scholar
  133. Wang WW, Reynolds JL (199la) Aqueous photolysis of 14C-deltamethrin. AgrEvo report A47960; EPA MRID 42114818.Google Scholar
  134. Wang WW, Reynolds JL (1991b) Soil photolysis of 14C-deltamethrin. AgrEvo report A47919; EPA MRID 42114819.Google Scholar
  135. Warren J (1984) Photodegradation of tralomethrin on soil surface exposed to artificial sunlight. AgrEvo report A72966.Google Scholar
  136. Williams IH, Brown MJ (1979) Persistence of permethrin and WL 43775 in soil. J Agric Food Chem 27: 130–132.CrossRefGoogle Scholar
  137. Wollerton C (1987) Permethrin water solubility and octanol-water partition coefficient. Zeneca summary, September 2, 1987.Google Scholar
  138. Wollerton C, Husband R (1988a) PP321: water solubility, octanol-water partition coefficient, vapour pressure, and Henry’s law constant. Zeneca report RJ 0699B.Google Scholar
  139. Wollerton C, Husband R (1988b) Cypermethrin: water solubility, octanol-water partition coefficient and Henry’s law constant. Zeneca report RJ0672B.Google Scholar
  140. Wolt JD (1996) Personal communication to the FIFRA Exposure Model Validation Task Force.Google Scholar
  141. Wu J, Gross EM, Gavin D (1986a) Photodegradation of FMC 54800 in aqueous solution. FMC report P-1349; EPA MRID 264642.Google Scholar
  142. Wu J, Gross EM, Gavin D (1986b) Photodegradation of FMC 54800 in/on soil. FMC report P-1351; EPA MRID 264642.Google Scholar
  143. Yamauchi F (1985) PP-563 Cyhalothrin: accumulation in fish (carp) in a flow-through water system. Zeneca report; MITES report 58–367.Google Scholar
  144. Yoder SJ (1991a) Deltamethrin A.I. Determination of vapor pressure. AgrEvo report A47916; EPA MRID 42137502.Google Scholar
  145. Yoder SJ (1991b) Deltamethrin A.I. Determination of octanol/water partition coefficient. AgrEvo report A47915; EPA MRID 42114802.Google Scholar
  146. Yoshida H, Yoshimoto Y, Takase I (1984) Residual fate of cyfluthrin (FCR 1272) in soils under laboratory and field conditions. Bayer report 1197.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dennis A. Laskowski
    • 1
  1. 1.4600 Hickory CourtZionsvilleUSA

Personalised recommendations