Chemical and Isotopic Constraints on 14C Dating of Groundwater

  • Jean-Charles Fontes


The conversion of the 14C activity of the total dissolved inorganic carbon (TDIC) in terms of groundwater residence time is an interpretation requiring the discussion of several constraints. This chapter is a review of some geochemical conditions that must be considered for groundwater dating.


Unsaturated Zone Isotope Exchange Accelerator Mass Spectrometry Water Resource Research Solid Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broecker, WS and Peng, TH 1982 Tracers in the Sea. Palisades, New York, Eldigio Press.Google Scholar
  2. Castany, G, Marcé, A, Margat, J, Moussu, H, Guillaume, Y and Evin, J 1974 Etude par les isotopes du mileu du régime des eaux souterraines dans les aquifères de grandes dimensions. In Isotope Techniques in Groundwater Hydrology I. Vienna, AIEA: 243–258.Google Scholar
  3. Craig, H and Keeling, CD 1963 The effects of atmospheric N2O on the measured composition of atmospheric CO2. Geochimica et Cosmochimica Acta 27: 549–551.CrossRefGoogle Scholar
  4. Deines, P, Langmuir, D and Harmon, RS 1974 Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochimica et Cosmochimica Acta 38: 1147–1164.CrossRefGoogle Scholar
  5. Dever, L (ms) 1985 Approches chimiques et isotopiques des interactions fluides-matrice en zone non saturée carbonatée. Thesis (Doctorat ès Sciences), Université Paris-Sud, Orsay: 179 p.Google Scholar
  6. Dever, L, Durand, R, Fontes, JCh and Vachier, P 1982 Géochimie et teneurs isotopiques de systèmes saisonniers de dissolution de la calcite dans un sol sur craie. Geochimica et Cosmochimica Acta 46: 1947–1956.CrossRefGoogle Scholar
  7. Dever, L and Fontes, JCh 1990 Isotopicchanges of the total dissolved inorganic carbon as tracers of liquid-solid interactions in the unsaturated zone. In Geochronology, Cosmochronology and Isotope Geology. 7th International Conference, Canberra (abstract).Google Scholar
  8. Dörr, H and Münnich, KO 1980 Carbon-14 and carbon-13 in soil CO2. In Stuiver, M and Kra, RS, eds, Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 909–918.Google Scholar
  9. Eichinger, L 1983 A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. In Stuiver, M and Kra, RS, eds, Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 347–356.Google Scholar
  10. Evans, GV, Otlet, RL, Downing, A, Monkhouse, RA and Rae, G 1979 Some problems in the interpretation of isotope measurements in United Kingdom aquifers. In Isotope Hydrology II. Vienna, IAEA: 679–708.Google Scholar
  11. Fleyfel, M (ms) 1979 Etude hydrologique, géochimique et isotopique des modalités de minéralisation et de transfert du carbone dans la zone d’infiltration d’un aquifère karstique. Thesis (Docteur ingénieur), Université Paris 6: 221. p.Google Scholar
  12. Fleyfel, M and Bakalowicz, M 1980 Etude géochimique et isotopique du carboneminéral dans un aquifère karstique. In Cristallisation, Déformation, Dissolution des Carbonates. Université Bordeaux III: 281–245.Google Scholar
  13. Fontes, JCh 1983 Dating of groundwater. In Guidebook on Nuclear Techniques in Hydrology. IAEA Technical Reports Series 91: 285–317.Google Scholar
  14. Fontes, JCh 1985 Some considerations on groundwater dating using environmental isotopes. In Keynote Papers, IAII Congress, 18th, part 1. Hydrogeology in the Service of Man: 118–154.Google Scholar
  15. Fontes, JCh and Gamier, JM 1976 Correction des activités apparentes en 14C du carbone dissous: estimation de la vitesse des eaux des nappes captives. In Réunion Annuelle Sciences de la Terre. Paris, Société Géologique de France 77: 4 p.Google Scholar
  16. Fontes, JCh and Gamier, JM 1977 Determination of the initial 14C activity of the total dissolved carbon. Age estimation of waters in confined aquifer. In Proceedings of the 2nd International Symposium on Water Rock Interactions. Sciences Géologiques: 363–376.Google Scholar
  17. Fontes, JCh and Gamier, JM 1979 Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resources Research 15: 399–413.CrossRefGoogle Scholar
  18. Fritz, P, Reardon, EJ, Barker, J, Brown, M, Cherry, A, Killey, WD and McNaughton, D 1978 The carbon isotope geochemistry of a small groundwater system in northeastern Ontario. Water Resources Research 14: 1059–1067.CrossRefGoogle Scholar
  19. Galimov, EM 1966 Carbon isotopes in soil CO2. Geochemistry International 3: 889898.Google Scholar
  20. Gamier, JM and Fontes, JCh 1980 Hydro-chimie, géochimie des isotopes du milieu et conditions de circulation dans la nappe captive des sables astiens (Hérault). Revue Bureau de Recherches Géologiques et Minières 2, Series 3: 199–214.Google Scholar
  21. Gasparini, A, Custodio, E, Fontes, JCh, Jimenez, J and Nunez, JA 1990 Exemple d’étude géochimique et isotopique de circulations aquifères en terra in volcaniqueGoogle Scholar
  22. sous climat semi-aride (Amurga, Gran Canaria, Iles Canaries). Journal of Hydrology 114: 61–91.Google Scholar
  23. Geyh, MA and Wendt, I 1965 Results of water sample dating by means of the model of Münnich and Vogel. In Chatters, RM and Olson, EA, eds, Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Clearinghouse for Federal and Technical Information, National Bureau of Standards, Washington, DC: 597–603.Google Scholar
  24. Haas, H, Fisher, DW, Thorthenson, C and Weeks, EP 1983 14CO,and 14CO2 measurements on soil atmosphere sampled in the western Great Plains of the US. In Stuiver, M and Kra, RS, eds, Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 301–314.Google Scholar
  25. Ingerson, E and Pearson, FJ 1964 Estimation of age and rate of motion of groundwater by the 14C-method. In Miyake, Y and Koyama, T, eds, Recent Researches in the Field of Hydrosphere, Atmosphere and Nuclear Geochemistry. Tokyo, Maruzen: 263–283.Google Scholar
  26. Kunkler, JL 1969 The source of carbon dioxide in the zone of aeration of the Bandelier Tuff, near Los Alamos, New Mexico. USGS Professional Paper 650–13: B185 — B188.Google Scholar
  27. Lesniak, PM and Sakai, H 1990 Carbon isotope fractionation between dissolved carbonate (CO3’) and CO2 (g) at 25° and 40°C. Earth and Planetary Science Letters 95: 297–301.CrossRefGoogle Scholar
  28. Levin, I, Hesshaimer, V, Glöcker, R, Kromer, B, Münnich, KO and Francey, R 1989 Radiocarbon in atmospheric CO2: Global distribution and trends. In Extended Abstracts, 3rd International CO2 Conference. WMO Report 59: 55–60.Google Scholar
  29. Levin, I, Münnich, KO and Weiss, W 1980 The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. In Stuiver, M and Kra, RS, eds, Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 379391. 260 Jean-Charles Fontes Google Scholar
  30. Mazor, E, Verhagen, BT, Sellschop, JPF, Robins, NS and Hutton, LG 1974 Kalahari groundwaters: their hydrogen, carbon and oxygen isotopes. In Isotope Techniques in Groundwater Hydrology 1. Vienna, AIEA: 203–223.Google Scholar
  31. Mook, WG 1972 On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In Rafter, TA and Grant Taylor, T, eds, Proceedings of the 8th International 1Q C Conference. Wellington, Royal Society of New Zealand: 342–352.Google Scholar
  32. Mook, WG 1976 The dissolution-exchange model for dating groundwater with 14C. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. Vienna, IAEA: 213–225.Google Scholar
  33. Mook, WG 1980 Carbon-14 in hydrogeological studies. In Fritz, P and Fontes, JCh, eds, Handbook of Environmental Isotopes Geochemistry 1. Amsterdam, The Netherlands, Elsevier: 50–74.Google Scholar
  34. Mook, WG, Bommerson, JC and Staverman, WH 1974 Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22: 169–176.CrossRefGoogle Scholar
  35. Moulin, M (ms) 1990 Genèse et évolution des minéraux secondaires en zone non saturée carbonatée: Etude géochimique et isotopique de la zone non saturée de la craie de Champagne. PhD thesis, Université Paris-Sud, Orsay: 220 p.Google Scholar
  36. Münnich, KO 1957 Messung des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften 44: 32–34.CrossRefGoogle Scholar
  37. Münnich, KO and Roether, W 1963 A comparison of carbon-14 and tritium ages of groundwater. In Radioisotopes in Hydrology. Vienna, AIEA: 97–404.Google Scholar
  38. Münnich, KO and Vogel, JC 1959 14C Altersbestimmung von Süsswasser-Kalkablagerungen. Naturwissenschaften 46: 168.Google Scholar
  39. Neftel, A, Oeschger, H, Schwander, J, Stauffer, B and Zumbrunn, R 1982 Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295: 220–223.CrossRefGoogle Scholar
  40. Nydal, R and Lövseth, K 1983 Tracing bomb 14C in the atmosphere, 1962–1980. Journal of Geophysical Research 88(C6): 36213642.Google Scholar
  41. Ousmane, B, Fontes, JCh, Aranyossy, JF and Joseph, A 1983 Hydrologie isotopique et hydrochimie des aquifères discontinus de la bande sahélienne et de l’Air (Niger). In The Use of Isotopic Techniques in Water Resources Development. Vienna, IAEA: 367–395.Google Scholar
  42. Parada, CB, Long, A and Davis, SN 1983 Stable isotopic composition of soil carbon dioxide in the Tucson Basin, Arizona, USA. Isotope Geosciences 1: 219–236.Google Scholar
  43. Plummer, LN 1977 Defining reactions and mass transfer in part of the Floridian aquifer. Water Resources Research 13: 801–812.CrossRefGoogle Scholar
  44. Plummer, LN, Busby, JF, Lee, RW and Hanshaw, BB 1990 Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming and South Dakota. Water Resources Research 26: 1981–2014.CrossRefGoogle Scholar
  45. Reardon, EJ, Allison, GB and Fritz, P 1979 Seasonal chemical and isotopic variations of soil CO2 at Trout Creek, Ontario. Journal of Hydrology 43: 355–371.CrossRefGoogle Scholar
  46. Reardon, EJ and Fritz, P 1978 Computer modeling of groundwater 13C and 14C isotope compositions. Journal of Hydrology 36: 201–224.CrossRefGoogle Scholar
  47. Reardon, EJ, Mozeto, AA and Fritz, P 1980 Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution. Geochimica et Cosmochimica Acta 44: 1723–1735.CrossRefGoogle Scholar
  48. Rightmire, CT 1978 Seasonal variation in Pand 13C content of soil atmosphere. Water Resources Research 14: 691–692.CrossRefGoogle Scholar
  49. Rightmire, CT and Hanshaw, BB 1973 Relationship between the carbon isotope composition of soil CO2 and dissolved carbonate species in groundwater. Water Resources Research 9: 958–967.CrossRefGoogle Scholar
  50. Rubinson, M and Clayton, RN 1969 Carbon-13 fractionation between aragonite and calcite. Geochimica et Cosmochimica Acta33: 997–1022.Google Scholar
  51. Salati, E, Menezes Leal, J and Mendes Campos, M 1974 Environmental isotopes used in a hydrogeological study of northeastern Brazil. In Isotope Techniques in Groundwater Hydrology 1. Vienna, AIEA: 259–282.Google Scholar
  52. Salem, O, Visser, JH, Dray, M and Gonfiantini, R 1980 Groundwater flow patterns in the western Lybian Arab Jamahiriaya. In Arid-Zone Hydrology: Investigations with Isotope Techniques. Vienna, IAEA: 165179.Google Scholar
  53. Saliège, JF and Fontes, JCh 1984 Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35 (1): 55–62.CrossRefGoogle Scholar
  54. Salomons, W and Mook, WG 1986 Isotope geochemistry of carbonates in the weathering zone. In Fritz, P and Fontes, JCh, eds, Handbook of Environmental Isotope Geochemistry 2. Amsterdam, The Netherlands, Elsevier: 239–269.Google Scholar
  55. Smith, DB, Downing, RA, Monkhouse, RA, Otlet, RL and Pearson, FJ 1976 The age of groundwater in the chalk of the London basin. Water Resources Research 12: 392404.Google Scholar
  56. Stuiver, M and Kra, RS, eds, 1986 Calibration issue. Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2B): 905–1030.Google Scholar
  57. Tamers, MA 1967 Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In Isotope Techniques in the Hydrological Cycle.Ainerican Geophysical Union Monograph 11: 143–152.Google Scholar
  58. Vogel, JC and Ehhalt, D 1963 The use of carbon isotopes in groundwater studies. In Radioisotopes in Hydrology. Vienna, IAEA: 383–395.Google Scholar
  59. Vogel, JC, Ehhalt, D and Roether, W 1963 A survey of the natural isotopes of water in South Africa. In Radioisotopes in Hydrology. Vienna, IAEA: 407–416.Google Scholar
  60. Vogel, JC, Fuls, A and Ellis, RP 1978 The geographical distribution of Kranz grasses in South Africa. South African Journal of Sciences 74: 209–215.Google Scholar
  61. Vogel, JC, Grootes, PM and Mook, WG 1970 Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift far Physik 230: 225–238CrossRefGoogle Scholar
  62. Wal, van de, RSW, van der Borg, K, Oerter, H, Reek, N, de Jong, AFM and Oerlemans, J 1990 Progress in ice dating of ice at Utrecht. In Yiou, F and Raisbeck, GM, eds, Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52(3,4): 469–472.Google Scholar
  63. Wallick, EI 1976 Isotopic and chemical considerations in radiocarbon dating of groundwater within the semi-arid Tucson Basin, Arizona. In Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. Vienna, IAEA: 195–212.Google Scholar
  64. Wigley, TML 1975 Carbon dating of groundwater from closed and open systems. Water Resources Research 11: 324–328.CrossRefGoogle Scholar
  65. Wigley, TM, Plummer, LN and Pearson, FJ 1978 Mass transfer and carbon isotope evolution in natural water systems. Geochimica et Cosmochimica Acta 42: 1117–1139.CrossRefGoogle Scholar
  66. Wilson, AT and Donahue, DJ 1990 AMS carbon-14 dating of ice: Progress and future prospects. In Yiou, F and Raisbeck, GM, eds, Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research B52 (3,4): 473–476.Google Scholar
  67. Winter, K, Troughton, JH and Card, A 1976 813C values of grass species collected in the northern Sahara Desert. Oecologia 25: 115–123.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jean-Charles Fontes

There are no affiliations available

Personalised recommendations