Regulation of Milk Lipid Formation and Secretion in the Mouse Mammary Gland

  • James L. McManaman
  • Carol A. Palmer
  • Steven Anderson
  • Kaylee Schwertfeger
  • Margaret C. Neville
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 554)

Abstract

Cytosolic lipid droplets (CLDs), the immediate precursors of milk lipids in lactating animals, undergo cell-specific changes in their formation and intracellular distribution during mammary gland differentiation. Cell biological studies indicate that CLD formation in mammary epithelial cells is regulated in part by AKT-dependent increases in glucose uptake. Proteomic studies show that CLDs from lactating mammary epithelial cells possess a distinct protein composition enriched in molecules involved in their secretion and intracellular transport. CLD secretion is dependent on lactation and requires the purine catabolic enzyme xanthine oxidoreductase (XOR). Confocal immunofluorescence microscopy of XOR in lactating and nonlactating mammary glands and biochemical analysis of secreted CLDs link the secretion process to the formation of a stable tripartite complex between XOR, adipophilin (ADPH), and butyrophilin (Btn). Together these studies provide a molecular and cellular framework for understanding the process of milk lipid formation.

Keywords

Mammary Gland Mammary Epithelial Cell Alveolar Epithelial Cell Apical Plasma Membrane Mouse Mammary Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen JC, Keller RP, Archer P, Neville MC. Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr 1991;54:69–80.PubMedGoogle Scholar
  2. Baldwin RL, Yang YT. Enzymatic and metabolic changes in the development of lactation. In: Larson BL, Smith VR, editors. Lactation. New York: Academic Press, 1974; pp 349–407.Google Scholar
  3. Buechler C, Ritter M, Duong CQ, Orso E, Kapinsky M, Schmitz G. Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 2001;1532:97–104.PubMedCrossRefGoogle Scholar
  4. Delzenne NM, Kok N. Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 2001;73:456S-458S.PubMedGoogle Scholar
  5. Dils RR. Comparative aspects of milk fat synthesis. J Dairy Sei 1986;69:904–910.CrossRefGoogle Scholar
  6. Dils RR. Milk fat synthesis. In: Mepham TB, editor. Biochemistry of Lactation. Amsterdam: Elsevier, 1983; pp 141–157.Google Scholar
  7. Fleet IR, Goode JA, Hamon MH, Laurie MS, Linzell JL, Peaker M. Secretory activity of goat mammary glands during pregnancy and the onset of lactation. J Physiol 1975;251:763–773.Google Scholar
  8. Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999;274:16825–16830.CrossRefGoogle Scholar
  9. Gao J, Ye H, Serrero G. Stimulation of adipose differentiation related protein (ADRP) expression in adipocyte precursors by long-chain fatty acids. J Cell Physiol 2000;182:297–302.PubMedCrossRefGoogle Scholar
  10. Gupta RA, Brockman JA, Sarraf P, Willson TM, DuBois RN. Target genes of peroxisome proliferator-activated receptor gamma in colorectal cancer cells. J Biol Chem 2001;276:29681–29687.CrossRefGoogle Scholar
  11. Hachey DL, Thomas MR, Emken EA, Garza C, Brown-Booth L, Adlof RO, Klein PD. Human lactation: maternal transfer of dietary triglycerides labeled with stable isotopes. J Lipid Res 1987;28:1185–1192.PubMedGoogle Scholar
  12. Hamosh M, Clary TR, Chernick SS, Scow RO. Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta 1970;210:473–482.PubMedCrossRefGoogle Scholar
  13. Hartmann PE. Changes in the composition yield of the mammary secretion of cows during the initiation of lactation. Journal of Endocrinology 1973;59:231–247.PubMedCrossRefGoogle Scholar
  14. Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294;309–321.PubMedCrossRefGoogle Scholar
  15. Hollman KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic Press, 1974; pp 3–95.Google Scholar
  16. Jenness R. Comparative aspects of milk proteins. J Dairy Res 1979;46:197–210.PubMedCrossRefGoogle Scholar
  17. Jensen RG, Bitman J, Carlson SE, Couch SC, Hamosh M, Newburg DS. Milk lipids: A. Human milk lipids. In: Jensen RG, editor. Handbook of Milk Composition. San Diego: Academic Press, 1995; pp 495–542.CrossRefGoogle Scholar
  18. Kang S, Davis RA. Cholesterol and hepatic lipoprotein assembly and secretion. Biochim Biophys Acta 2000;1529:223–230.PubMedCrossRefGoogle Scholar
  19. Kuhn NJ. Progesterone withdrawal as the lactogenic trigger in the rat. J Endocrinol 1969;44:39–54.PubMedCrossRefGoogle Scholar
  20. Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM, Kimmel AR. Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans 1995;23:611–615.PubMedGoogle Scholar
  21. Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10:51–58.PubMedCrossRefGoogle Scholar
  22. Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001;12:741–749.PubMedCrossRefGoogle Scholar
  23. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and -dependent pathways. Development 1999;122:181–193.Google Scholar
  24. Magun R, Burgering BM, Coffer PJ, Pardasani D, Lin Y, Chabot J, Sorisky A. Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology 1996;137:3590–3593.PubMedCrossRefGoogle Scholar
  25. Marti A, Feng Z, Altermatt HJ, Jaggi R. Milk accumulation triggers apoptosis of mammary epithelial cells. Eur J Cell Biol 1997;73:158–165.PubMedGoogle Scholar
  26. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998;3:259–273.PubMedCrossRefGoogle Scholar
  27. McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol 2002;545:567–579.PubMedCrossRefGoogle Scholar
  28. McManaman JL, Zabaronick W, Schaack J, Orlicky D. Lipid targeting domains of adipophilin. J Lipid Res 2003;44:668–673.PubMedCrossRefGoogle Scholar
  29. Mensenkamp AR, Havekes LM, Romijn JA, Kuipers F. Hepatic steatosis and very low density lipoprotein secretion: the involvement of apolipoprotein E. J Hepatol 35;2001:816–822.CrossRefGoogle Scholar
  30. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002;277:32253–32257.PubMedCrossRefGoogle Scholar
  31. Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci 1999;24:109–115.PubMedCrossRefGoogle Scholar
  32. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001;40:325–438.PubMedCrossRefGoogle Scholar
  33. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7:49–66.PubMedCrossRefGoogle Scholar
  34. Neville MC, Neifert MR, editors. Lactation: Physiology, Nutrition, and Breast-Feeding. New York: Plenum Press, 1983.Google Scholar
  35. Nguyen D-AD, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 2001;170:347–356.PubMedCrossRefGoogle Scholar
  36. Palmer CA, Lubon H, McManaman JL. Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res 2003;12:283–292.PubMedCrossRefGoogle Scholar
  37. Patton, S., Stemberger, B. H., & Knudsen, C. M.. The suppression of milk fat globule secretion by colchicine: an effect coupled to inhibition of exocytosis. Biochim Biophys Acta 1977;499:404–410.PubMedCrossRefGoogle Scholar
  38. Rudolph M, McManaman JL, Hunter L, Phang T, Neville MC. Initiation of lactation in the mammary gland: Temporal analysis of a complex biological switch with expression profiling and trajectory clustering. J Mammary Gland Biol Neoplasia 2003;8:287–307.PubMedCrossRefGoogle Scholar
  39. Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003;44:1100–1112.PubMedCrossRefGoogle Scholar
  40. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese R V Jr. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000;25:87–90.PubMedCrossRefGoogle Scholar
  41. Souza SC, Muliro KV, Liscum L, Lien P, Yamamoto MT, Schaffer JE, Dallai GE, Wang X, Kraemer FB, Obin M, Greenberg AS. Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system. J Biol Chem 2002;277:8267–8272.PubMedCrossRefGoogle Scholar
  42. Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 1998;47:691–695.PubMedCrossRefGoogle Scholar
  43. Steiner S, Wahl D, Mangold BL, Robison R, Raymackers J, Meheus L, Anderson NL, Cordier A. Induction of the adipose differentiation-related protein in liver of etomoxir-treated rats. Biochem Biophys Res Commun 1996;218:777–782.PubMedCrossRefGoogle Scholar
  44. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 1992;115:49–58PubMedGoogle Scholar
  45. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277:44507–44512.PubMedCrossRefGoogle Scholar
  46. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 2002; 16:3223–3235.PubMedCrossRefGoogle Scholar
  47. Vosper H, Patel L, Graham TL, Khoudoli GA, Hill A, Macphee CH, Pinto I, Smith SA, Suckling KE, Wolf CR, Palmer CN. The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem 2001;276:44258–44265.PubMedCrossRefGoogle Scholar
  48. Wellings SR. Ultrastructural basis of lactogenesis. In: Reynolds M, Folley SJ, editors. Lactogenesis. Philadelphia: University of Pennsylvania Press, 1969; pp 5–25.Google Scholar
  49. Wu CC, Howell KE, Neville MC, Yates JR III, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000;21;3470–3482.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • James L. McManaman
    • 1
  • Carol A. Palmer
    • 2
  • Steven Anderson
    • 3
  • Kaylee Schwertfeger
    • 4
  • Margaret C. Neville
    • 1
    • 4
  1. 1.Division of Basic Reproductive Science, Department Obstetrics and GynecologyUniversity of Colorado Health Sciences Center (UCHSC)DenverUSA
  2. 2.Department of Physiology and BiophysicsUCHSCUSA
  3. 3.Department of PathologyUCHSCUSA
  4. 4.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations