Skip to main content

Plasticity in the Auditory System of Insects

  • Chapter
Plasticity of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 23))

  • 400 Accesses

Abstract

The term “plasticity” covers different aspects and mechanisms in the nervous system. It is, however, still not readily associated with insects for a number of reasons. First, insects often seem to have a stereotyped behavior. Second, scientists established the identified neuron concept, which implies that the very same nerve cells can be identified repeatedly by their function and morphology from individual to individual (Hoyle 1983). Both views led to the belief that information processing in the nervous systems of insects is hardwired rather than plastic. Despite this belief, early studies pointed out that at least some insects, such as bees, are capable of remarkable learning tasks (von Frisch 1914; Thorpe 1939; Horridge 1962; Alloway 1972). Learning, however, requires plastic changes in the nervous system. At present learning and memory are not only well established for different insects (for recent reviews see Hammer and Menzel 1995; Menzel and Müller 1996; Menzel 2001) but also genetically accessible in Drosophila (Dubnau and Tully 1998), making insects favorable model organisms, at least for this aspect of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway TM (1972) Learning and memory in insects. Annu Rev Entomol 17: 43–56.

    Article  Google Scholar 

  • Atkins G, Pollack GS (1986) Age dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus. J Comp Neurol 243: 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Atkins G, Pollack GS (1987) Response properties of prothoracic, interganglionic, soundactivated intemeurons in the cricket Teleogryllus oceanicus. J Comp Physiol A 161: 681–693.

    Article  Google Scholar 

  • Ball E (1979) Development of the auditory tympanum in the cricket Teleogryllus commodus: experiments on regeneration and transplantation. Experienta 35: 324–325.

    Article  Google Scholar 

  • Ball E, Young D (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). II. Postembryonic development. Z Zellforsch 147: 313–324.

    Google Scholar 

  • Barth M, Hirsch HVB, Meinertzhagen IA, Heisenberg M (1997) Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J Neurosci 17: 1493–1504.

    PubMed  CAS  Google Scholar 

  • Biggin RI (1981) Pattern re-establishment: transplantation and regeneration of the leg on the cricket Teleogryllus commodus. J Embryol Exp Morphol 61: 87–101.

    PubMed  CAS  Google Scholar 

  • Blänsdorf I, Lakes-Harlan R (1993) Development of the scolophorous cells of the tympanal organ of Galleria mellonella L. In: Elsner N, Heisenberg M (eds), Gene—BrainBehaviour. Stuttgart and New York: Thieme, p. 216.

    Google Scholar 

  • Boulton PS (1969) Degeneration and regeneration in the insect central nervous system. Z Zellforsch Mikros Mat 101: 98–118.

    Article  CAS  Google Scholar 

  • Boyan GS (1983) Postembryonic development in the auditory system of the locust. J Comp Physiol 151: 499–513.

    Article  Google Scholar 

  • Boyan GS (1988) Presynaptic inhibition of identified wind-sensitive afferents in the cereal system of the locust. J Neurosci 8: 2748–2757.

    PubMed  CAS  Google Scholar 

  • Boyan GS (1993) Mother look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39: 187–200.

    Article  Google Scholar 

  • Boyan GS (1998) Development of the Insect Auditory System. In: Hoy RR, Popper AN, Fay RR (eds), Comparative Hearing in Insects. New York: Springer-Verlag, pp. 97138.

    Google Scholar 

  • Boyan GS, Altman JS (1985) The suboesophageal ganglion: a “missing link” in the auditory pathway of the locust. J Comp Physiol A 156: 413–428.

    Article  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1988) Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. J Neurobiol 19: 17–38.

    Article  PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1989) Integration of ultrasound and flight inputs on descending neurons in the cricket brain. J Exp Biol 145: 157–171.

    PubMed  CAS  Google Scholar 

  • Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6: 858–868.

    Article  PubMed  CAS  Google Scholar 

  • Bullière D, Bullière F (1985) Regeneration. In: Kerkut GA, Gilbert LI (eds), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 5 Oxford: Pergamon Press, pp. 372–424.

    Google Scholar 

  • Burg MG, Wu C-F (1986) Differentiation and central projections of peripheral sensory cells with action-potential block in Drosophila mosaics. J Neurosci 6: 2968–2976.

    PubMed  CAS  Google Scholar 

  • Burg MG, Wu C-F (1989) Central projections of peripheral mechanosensory cells with increased excitability in Drosophila mosaics. Dev Biol 131: 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Burrows M, Pflüger HJ (1995) Action of locust neuromodulatory neurons is coupled to specific motor patterns. J Neurophysiol 74: 347–357.

    PubMed  CAS  Google Scholar 

  • Cayre M, Strambi C, Strambi A (1994) Neurogenesis in an adult insect brain and its hormonal control. Nature 386: 57–59.

    Article  Google Scholar 

  • Cayre M, Strambi C, Charpin P, Augier R, Meyer MR, Edwards JS, Strambi A (1996) Neurogenesis in adult insect mushroom bodies. J Comp Neurol 371: 300–310.

    Article  PubMed  CAS  Google Scholar 

  • Chiba A, Murphey RK (1991) Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity. J Neurobiol 22: 130–142.

    Article  PubMed  CAS  Google Scholar 

  • Chiba A, Shepherd D, Murphey RK (1988) Synaptic rearrangement during postembryonic development in the cricket. Science 240: 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Davies GW, Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8: 149–156.

    Article  Google Scholar 

  • Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16: 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Drier EA, Tello MK, Cowan M, Wu P, Blace N, Sachtor TC, Yin JCP (2002) Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat Neurosci 5: 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Tully T (1998) Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21: 401–444.

    Article  Google Scholar 

  • Duch C, Mentel T, Pflüger HJ (1999) Distribution and activation of different types of octopaminergic DUM neurons in the locust. J Comp Neurol 403: 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF, Duyk GM, Perrimon N (1997) A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci USA 94: 14837–14842.

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS (1969) Postembryonic development and regeneration in the insect nervous system. Adv Insect Physiol 6: 97–137.

    Article  Google Scholar 

  • Edwards JS (1988) Sensory regeneration in arthropods: implications of homeosis and of ectopic sensilla. Am Zool 28: 1155–1164.

    Google Scholar 

  • Edwards JS, Palka J (1976) Neural generation and regeneration. In: Fentress J (ed), Simpler Networks and Behaviour. Sunderland, MA: Sinauer, pp. 167–185.

    Google Scholar 

  • Fölsch A, Lakes-Harlan R (2003) Habituation of the startle response of Gryllus bimaculatus (Orthoptera). In: Elsner N, Zimmermann H (eds), Göttingen Neurobiology Report. Stuttgart and New York: Thieme (in press).

    Google Scholar 

  • Fonseca PJ, Miinch D, Hennig RM (2000) How cicadas interpret acoustic signals. Nature 405: 297–298.

    Article  PubMed  CAS  Google Scholar 

  • Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8: 248–252.

    Article  PubMed  CAS  Google Scholar 

  • Givois V, Pollack GS (2000) Sensory habituation of auditory receptor neurons: implications for sound localization. J Exp Biol 203: 2529–2537.

    PubMed  CAS  Google Scholar 

  • Goodman CS (1978) Isogenic grasshoppers: genetic variability in the morphology of identified neurons. J Comp Neurol 182: 681–706.

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS (1982) Embryonic development of identified neurons in the grasshopper. In: Spitzer NC (ed), Neuronal Development. New York: Plenum Press, pp. 171–212.

    Chapter  Google Scholar 

  • Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19: 341–377.

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 (Suppl.): 77–98.

    Article  PubMed  Google Scholar 

  • Goodman CS, Spitzer NC (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature 280: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Halfmann K, Elsner N (1978) Larval stridulation in acridid grasshoppers. Naturwissenschaften 65: 265.

    Article  Google Scholar 

  • Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15: 1617–1630.

    PubMed  CAS  Google Scholar 

  • Hardt M, Watson AH (1999) Distribution of input and output synapses of the central branches of bushcricket and cricket auditory afferent neurones: immuncytochemical evidence for GABA and glutamate in different populations of presynaptic boutons. J Comp Neurol 403: 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Hedwig B, Meyer J (1994) Auditory information processing in stridulating grasshoppers: tympanic membrane vibrations and neurophysiology. J Comp Physiol A 174: 121–131.

    Article  Google Scholar 

  • Heisenberg M, Heusipp M, Wanke C (1995) Structural plasticity in the Drosophila brain. J Neurosci 15: 1951–1960.

    PubMed  CAS  Google Scholar 

  • Hennig RM, Weber T, Huber F, Kleindienst H-U, Moore TE, Popov AV (1994) Auditory threshold change in singing cicadas. J Exp Biol 187: 45–55.

    PubMed  Google Scholar 

  • Hintze-Podufal C, von Hermanni G (1996) The development of the tympanic organs of wax moth species and their inverted scolopidia (Lepidoptera: Pyralidae: Galleriinae). Entomol Gen 20: 195–201.

    Google Scholar 

  • Hirsch HVB, Tompkins L (1994) The flexible fly: experience-dependent development of complex behaviors in Drosophila melanogaster. J Exp Biol 195: 1–18.

    PubMed  CAS  Google Scholar 

  • Horridge GA (1962) Learning of leg position by headless insects. Nature 193: 697–698.

    Article  PubMed  CAS  Google Scholar 

  • Horseman G, Huber F (1994) Sound localisation in crickets. It Modeling the role of a simple neural network in the prothoracic ganglion. J Comp Physiol A 175: 399–413.

    Google Scholar 

  • Hoy RR (1998) Acute as a bug’s ear: An informal discussion of hearing in insects. In: Hoy RR, Popper AN, Fay RR (eds), Comparative Hearing in Insects. New York: Springer-Verlag, pp. 1–18.

    Chapter  Google Scholar 

  • Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41: 433–450.

    Article  PubMed  CAS  Google Scholar 

  • Hoy RR, Nolen TG, Casaday GC (1985) Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket. Proc Natl Acad Sci USA 82: 7772–7776.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G (1983) On the way to neuroethology: the identified neuron approach. In: Huber F, Markl H (eds), Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 9–25.

    Chapter  Google Scholar 

  • Huber F (1987) Plasticity in the auditory system of crickets: phonotaxis with one ear and neuronal reorganization within the auditory pathway. J Comp Physiol A 161: 583–604.

    Article  Google Scholar 

  • Jacobs K (1997) Axonale Degeneration and Regeneration tympanaler Sinneszellen von Schistocerca gregaria. Dissertation, Universität Göttingen.

    Google Scholar 

  • Jacobs K, Lakes-Harlan R (1999) Axonal degeneration within the tympanal nerve of Schistocerca gregaria. Cell Tissue Res 298: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs K, Lakes-Harlan R (2000) Pathfinding, target recognition and synapse formation of single regenerating fibres in the adult grasshopper Schistocerca gregaria. J Neurobiol 42: 394–409.

    Article  PubMed  CAS  Google Scholar 

  • Kalmring K, Kühne R, Moysich F (1978) The auditory pathway in the ventral cord of the migratory locust (Locusta migratoria): response transmission in the axons. J Comp Physiol 126: 25–33.

    Article  Google Scholar 

  • Klose M (1990) Development of nerve pathways and receptor organs in cricket legs. In: Elsner N, Roth G (eds), Brain—Perception—Cognition; Proceedings of the 18th Göttingen Neurobiology Conference. Stuttgart and New York: Thieme, p. 104.

    Google Scholar 

  • Lakes R (1988) Postembryonic determination and plasticity in the auditory system of Locusta migratoria. Monogr Dev Biol 21: 214–221.

    PubMed  CAS  Google Scholar 

  • Lakes R, Kalmring K (1991) Regeneration of the projection and synaptic connections of tympanic receptor fibers of Locusta migratoria ( Orthoptera) after axotomy. J Neurobiol 22: 169–181.

    Google Scholar 

  • Lakes R, Mücke A (1989) Regeneration of the foreleg tibia and tarsi of Ephippiger ephippiger ( Orthoptera, Tettigoniidae). J Exp Zool 250: 176–187.

    Google Scholar 

  • Lakes R, Pollack GS (1990) The development of the sensory organs of the legs in the blowfly, Phormia regina. Cell Tissue Res 259: 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Lakes R, Schikorski T (1990) Neuroanatomy of the Tettigoniids. In: Bailey WJ, Rentz, DCF (eds), The Tettigoniidae: Biology, Systematics and Evolution. Bathurst: Crawford House Press, pp. 166–190.

    Chapter  Google Scholar 

  • Lakes R, Kalmring K, Engelhardt K-H (1990) Changes in the auditory system of locusts (Locusta migratoria and Schistocerca gregaria) after deafferentation. J Comp Physiol A 166: 553–563.

    Article  Google Scholar 

  • Lakes-Harlan R, Pfahlert C (1995) Regeneration of axotomized tympanal nerve fibres in the adult grasshopper Chorthippus biguttulus (L.) ( Orthoptera: Acrididae) correlates with regaining the localization ability. J Comp Physiol A 176: 797–807.

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of insect hearing organs from a preadaptive structure. Proc Roy Soc B 266: 1161–1167.

    Article  Google Scholar 

  • Lakes-Harlan R, Stölting H, Moore T (2000) Phonotactic behavior of a parasitoid fly (Emblemasoma auditrix, Diptera, Sarcophagidae) in response to the calling song of the host cicada (Okanagana rimosa, Homoptera, Cicadidae). Zoology 103: 31–39.

    Google Scholar 

  • Lang F (1996) Noise filtering in the auditory system of Locusta migratoria L. J Comp Physiol A 179: 575–585.

    Article  Google Scholar 

  • Lewis FP, Fullard JH (1996) Neurometamorphosis of the ear in the gypsy moth, Lyman-tria dispar, and its homologue in the earless forest tent caterpillar moth, Malacosoma disstria. J Neurobiol 31: 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization on Drosophila visual learning requires the mushroom bodies. Nature 400: 753–756.

    Article  PubMed  CAS  Google Scholar 

  • May ML, Hoy RR (1991) Habituation of the ultrasound-induced acoustic startle response in flying crickets. J Exp Biol 159: 489–499.

    PubMed  CAS  Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21: 592–610.

    Article  PubMed  CAS  Google Scholar 

  • Meinertzhagen IA (1993) The synaptic populations of the fly’s optic neuropil and their dynamic regulation: parallels with the vertebrate retina. Prog Retin Res 12: 13–39.

    Article  Google Scholar 

  • Meinertzhagen IA (2001) Plasticity in the insect nervous system. Adv Insect Physiol 28: 84–167.

    Article  Google Scholar 

  • Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Giurfa M (1999) Cognition by a mini brain. Nature 400: 718–719.

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19: 379–404.

    Article  PubMed  CAS  Google Scholar 

  • Michel K, Petersen M (1982) Development of the tympanal organ in larvae of the migratory locust. Cell Tissue Res 222: 667–676.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A, Hoy RR (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol 152: 155–167.

    Article  Google Scholar 

  • Murphey RK (1986a) Competition and the dynamics of axon arbor growth in the cricket. J Comp Neurol 251: 100–110.

    Article  PubMed  CAS  Google Scholar 

  • Murphey RK (1986b) The myth of the inflexible invertebrate: competition and synaptic remodelling in the development of invertebrate nervous systems. J Neurobiol 17: 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226: 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Ocker W-G, Hedwig B (1993) Serial response decrement in the auditory pathway of the locust. Zool Jb Physiol 97: 312–326.

    Google Scholar 

  • Otte B, Lakes-Harlan R (1997) Changes in the auditory system of Schistocerca gregaria induced by an implanted, additional ear. In: Elsner N, Wässle H (eds), Neurobiology: from Membrane to Mind; Proceedings of the 25th Göttingen Neurobiology Conference. Stuttgart and New York: Thieme, p. 98.

    Google Scholar 

  • Palka J (1984) Precision and plasticity in the insect nervous system. Trends Neurosci 7: 455–456.

    Article  Google Scholar 

  • Pallas SL, Hoy RR (1988) Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified interneuron in the cricket Teleogryllus oceanicus. J Comp Neurol 248: 348–359.

    Article  Google Scholar 

  • Parker D (1995) Long-lasting potentiation of a direct central connection between identified motor neurons in the locust. Eur J Neurosci 7: 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Kalmring K, Cold A (1982) The auditory system in larvae of the migratory locust. Physiol Entomol 7: 43–54.

    Article  Google Scholar 

  • Pfahlert C, Lakes-Harlan R (1997) Responses of insect neurons to neurotrophic factors in vitro. Naturwissenschaften 84: 163–165.

    Article  CAS  Google Scholar 

  • Pflüger H-J, Hurdelbrink S, Czjzek A, Burrows M (1994) Activity-dependent structural dynamics of insect sensory fibers. J Neurosci 14: 6946–6955.

    PubMed  Google Scholar 

  • Pollack GS (1988) Selective attention on an insect auditory neuron. J Neurosci 8: 26352639.

    Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds), Comparative Hearing in Insects. New York: Springer-Verlag, pp. 139196.

    Google Scholar 

  • Popov AV, Markovich AM (1982) Auditory intemeurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus. II. A high-frequency ascending neuron (HF1AN). J Comp Physiol A 146: 351–359.

    Article  Google Scholar 

  • Popov AV, Svetlogorskaya ID (1971) Ultrastructural organization of the auditory nerve in Locusta migratoria. J Evol Biochem Physiol 7: 439–443.

    Google Scholar 

  • Popov AV, Michelsen A, Lewis B (1994) Changes in the mechanics of the cricket ear during early days of adult life. J Comp Physiol A 175: 165–170.

    Article  Google Scholar 

  • Psilopolous K, Lakes-Harlan R (1999) On the influence of chronic activity on the auditory system of Schistocerca gregaria. In: Elsner N, Eysel U (eds), From Molecular Neurobiology to Clinical Neuroscience. Stuttgart and New York: Thieme, p. 143.

    Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22: 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie MG (1992) Variation in male song and female preference within a population of Ephippiger ephippiger (Orthoptera: Tettigonidae) Anim Behav 43: 845–855.

    Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Trans Roy Soc Lond B 226: 179–185.

    Article  Google Scholar 

  • Römer H, Büngers D (1988) Plasticity of the locust auditory pathway following unilateral deafferentation in early larval development. In: Elsner N, Barth FG (eds), Sense Organs; Proceedings of the 16th Göttingen Neurobiology Conference. Stuttgart and New York: Georg Thieme, p. 152.

    Google Scholar 

  • Rössler W (1992) Postembryonic development of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger (Orthoptera, Tettigoniidae). Cell Tissue Res 269: 505–514.

    Article  Google Scholar 

  • Rössler W, Lakes-Harlan R (1999) Plasticity of the insect nervous system. In: Elsner N, Eysel U (eds), From Molecular Neurobiology to Clinical Neuroscience. Stuttgart and New York: Thieme, pp. 426–434.

    Google Scholar 

  • Schäffer S, Lakes-Harlan R (2001) Embryonic development of the central projection of auditory afferents (Schistocerca gregaria, Orthoptera, Insecta). J Neurobiol 46: 97112.

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155: 171–185.

    Article  Google Scholar 

  • Schildberger K, Kleindienst H-U (1989) Sound localization in intact and one-eared crickets. J Comp Physiol A 165: 615–626.

    Article  Google Scholar 

  • Schildberger K, Wohlers DW, Schmitz B, Kleindienst H-U (1986) Morphological and physiological changes in central auditory neurons following unilateral amputation on larval crickets. J Comp Physiol A 158: 291–300.

    Article  Google Scholar 

  • Schmitz B (1989) Neuroplasticity and phonotaxis in monaural adult female crickets (Gryllus bimaculatus de Geer). J Comp Physiol A 164: 343–358.

    Article  Google Scholar 

  • Schul J, Schulze W (2001) Phonotaxis during walking and flight: are differences in selectivity due to predation pressure? Naturwissenschaften 88: 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME (2002) Repairing the injured spinal cord. Science 295: 1029–1031.

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov AF (1990) Plasticity of phonotaxis specificity in crickets. In: Gribakin FG

    Google Scholar 

  • Wiese K, Popov AV (eds), Sensory Systems and Communication in Arthropods. Boston: Birkhäuser, pp. 341–344.

    Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Cat+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263: 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Souroukis K, Cade WH, Rowell G (1992) Factors that possibly influence variation in the calling song of field crickets: temperature, time. and male size, age and wing morphology. Can J Zool 70: 950–955.

    Article  Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: localization depends on recognition of the calling song pattern. J Comp Physiol A 165: 165–177.

    Article  Google Scholar 

  • Staecker H, Van De Water TR (1998) Factors controlling hair-cell regeneration/repair in the inner ear. Curr Opin Neurobiol 8: 480–487.

    Article  PubMed  CAS  Google Scholar 

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bush-cricket Pholidoptera griseoptera ( Tettigoniidae, Decticinae). Cell Tissue Res 294: 377386.

    Google Scholar 

  • Stout J, Atkins G, Walikonis R, Hao J, Bronsert M (2002) Influence of juvenile hormone III on the development and plasticity of responsiveness of female crickets to calling males through control of the response properties of identified auditory neurons. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Rubin R (eds), Hormones, Brain and Behavior. San Diego: Academic Press, pp. 167–193.

    Chapter  Google Scholar 

  • Stumpner A (1989) Physiological variability of auditory neurons in a grasshopper. Naturwissenschaften 76: 427–429.

    Article  Google Scholar 

  • Stumpner A (1999) An interneurone of unusual morphology is tuned to the female song frequency in the bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 202: 2071–2081.

    PubMed  CAS  Google Scholar 

  • Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88: 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Technau GM (1984) Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. J Neurogenet 1: 113–126.

    Article  PubMed  CAS  Google Scholar 

  • Thomas JB, Bastian MJ, Bate CM, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Thompson KJ, Siegler MV (1991) Anatomy and physiology of spiking local and inter-segmental interneurons in the median neuroblast lineage of the grasshopper. J Comp Neurol 305: 659–675.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behaviour. Psychol Rev 173: 16–43.

    Article  Google Scholar 

  • Thorpe WH (1939) Further studies on olfactory conditioning in a parasitic insect: the nature of the conditioning process. Proc R Soc Lond B 126: 379–397.

    Google Scholar 

  • Truman JW, Thorn RS, Robinow S (1992) Programmed neuronal cell death in insect development. J Neurobiol 23: 1295–1311.

    Article  PubMed  CAS  Google Scholar 

  • van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394: 773–776.

    Article  CAS  Google Scholar 

  • von Frisch K (1914) Der Farbensinn and Formensinn der Biene. Zool Jb Physiol 37: 1238.

    Google Scholar 

  • von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180: 373–386.

    Article  Google Scholar 

  • von Schilcher F (1976) The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim Behav 24: 18–26.

    Article  Google Scholar 

  • Watson AHD (1992) Presynaptic modulation of sensory afferents in the invertebrate and vertebrate nervous system. Comp Biochem Physiol 103A: 227–239.

    Article  CAS  Google Scholar 

  • Weeks JC, Levine RB (1990) Postembryonic neuronal plasticity and its control during insect metamorphosis. Annu Rev Neurosci 13: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Weeks JC, Jacobs GA, Pierce JT, Sandstrom DJ, Streichert LC, Trimmer BA, Wiel DE, Wood ER (1997) Neural mechanisms of behavioral plasticity: metamorphosis and learning in Manduca sexta. Brain Behav Evol 50 (Suppl.): 69–80.

    Article  PubMed  Google Scholar 

  • Williams DW, Shepherd D (1999) Persistent larval sensory neurons in adult Drosophila. J Neurobiol 39: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Wolf H (1986) Response patterns of two auditory interneurons in a freely moving grasshopper (Chorthippus biguttulus L.). J Comp Physiol A 158: 689–696.

    Article  Google Scholar 

  • Wolf H, von Helversen 0 (1986) “Switching-off” of an auditory interneuron during stridulation in the acridid grasshopper Chorthippus biguttulus L. J Comp Physiol A 158:861–871.

    Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273: 1542–1544.

    Article  PubMed  CAS  Google Scholar 

  • Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47: 380–400.

    Article  PubMed  CAS  Google Scholar 

  • Young D, Ball E (1974) Structure and development of the auditory system in the pro-thoracic leg of the cricket Teleogryllus commodus (Walker). I. Adult structure. Z Zellforsch 147: 293–312.

    Google Scholar 

  • Zhantiev RD, Korsunovskaja OS (1978) Morphofunctional organization of tympanal or- gans in Tettigonia cantans F. ( Orthoptera, Tettigoniidae). Zool J 57: 1012–1016.

    Google Scholar 

  • zur Lage P, Jarman AP (1999) Antagonism of EGFR and Notch signalling in the reiterative recruitment of Dmsophila adult chordotonal sense organ precursors. Development 126: 3149–3157.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakes-Harlan, R. (2004). Plasticity in the Auditory System of Insects. In: Parks, T.N., Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Plasticity of the Auditory System. Springer Handbook of Auditory Research, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4219-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4219-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1932-8

  • Online ISBN: 978-1-4757-4219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics