Skip to main content

Developmental Changes and Cellular Plasticity in the Superior Olivary Complex

  • Chapter
Plasticity of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 23))

Abstract

The superior olivary complex (SOC) is a conspicuous structure in the mammalian central auditory system. It is located ventrally in the pontine brain stem underneath the cerebellum and consists of several third-order nuclei. The general organization of the SOC is illustrated in Figure 3.1A. Usually three principal SOC nuclei are identified (for abbreviations, see list at end of chapter), the lateral superior olive (LSO), the medial superior olive (MSO), and the medial nucleus of the trapezoid body (MNTB; Irving and Harrison 1967; for review see Schwartz 1992; see also Reuss 2000). These principal nuclei are surrounded by periolivary regions: the superior paraolivary nucleus (SPN), the lateral nucleus of the trapezoid body (LNTB), and the ventral nucleus of the trapezoid body (VNTB). In the rodent brain, the nomenclature occasionally refers to the LNTB and VNTB as the lateroventral (LVPO) and medioventral periolivary region (MVPO), respectively (Osen et al. 1984; Thompson and Thompson 1991). In cats and bats, a dorsomedial periolivary nucleus (DMPO) has been described and appears to be equivalent to the SPN of the rodent brain (Schofield and Cant 1991; Schwartz 1992; Ostapoff et al. 1997; Grothe and Park 2000). Rostrally and caudally to the SOC proper, two additional areas are located that are generally called the rostral and the caudal periolivary region (RPO and CPO, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170: 107122.

    Google Scholar 

  • Altman J, Bayer SA (1980) Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. J Comp Neurol 194: 877–904.

    Google Scholar 

  • Altman J, Bayer SA (1981) Time of origin of neurons of the rat inferior colliculus and the relations between cytogenesis and tonotopic order in the auditory pathway. Exp Brain Res 42: 411–423.

    PubMed  CAS  Google Scholar 

  • Aponte JE, Kotak VC, Sanes DH (1996) Decreased synaptic inhibition leads to dendritic hypertrophy prior to the onset of hearing. Audit Neurosci 2: 235–240.

    Google Scholar 

  • Atoji Y, Suzuki Y (1992) Chondroitin sulfate in the extracellular matrix of the medial and lateral superior olivary nuclei in the dog. Brain Res 585: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Atoji Y, Kitamura Y, Suzuki Y (1990) Chondroitin sulfate proteoglycan in the extracellular matrix of the canine superior olivary nuclei. Acta Anat 139: 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Atoji Y, Yamamoto Y, Suzuki Y (1995) The presence of chondroitin sulfate A and C within axon terminals in the superior olivary nuclei of the adult dog. Neurosci Lett 189: 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Balakrishisan V, Becker M, Löhrke S, Nothwang HG, Güresir E, Friauf E (2003) Expression and function of chloride transporters in the developing auditory brainstem. J Neurosci 23: 4134–4145.

    Google Scholar 

  • Balice-Gordon RJ, Chua CK, Nelson CC, Lichtman JW (1993) Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron 11: 801–815.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20: 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Blatchley BJ, Cooper WA, Coleman JR (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Dev Brain Res 32: 75–84.

    Article  Google Scholar 

  • Book KJ, Morest DK (1990) Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J Comp Neurol 297: 55–76.

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol (Lond) 506: 143–157.

    Article  CAS  Google Scholar 

  • Bortolotto ZA, Fitzjohn SM, Collingridge GL (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol 9: 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31: 442–454.

    PubMed  CAS  Google Scholar 

  • Brand A, Behrend O, Marquardt T, Mcalpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417: 543–547.

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF (1983) Development of the lower brainstem auditory nuclei. In: Romand R (ed), Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 89–120.

    Google Scholar 

  • Brugge JF (1992) An overview of central auditory processing. In: Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 1–33.

    Chapter  Google Scholar 

  • Cant NB (1991) Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 99–119.

    Google Scholar 

  • Cant NB (1998) Structural development of the mammalian auditory pathways. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 315–413.

    Chapter  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457–476.

    Article  PubMed  CAS  Google Scholar 

  • Catalano SM, Shatz CJ (1998) Activity-dependent cortical target selection by thalamic axons. Science 281: 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Cherubim E, Rovira C, Gaiarsa JL, Corradetti R, Ben-Ari Y (1990) GABA mediated excitation in immature rat CA3 hippocampal neurons. Int J Dev Neurosci 8: 481490.

    Google Scholar 

  • Cochran SL, Stone JS, Bermingham-McDonogh O, Akers SR, Lefcort F, Rubel EW (1999) Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. J Comp Neurol 413: 271–288.

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR (1990) Development of auditory system structures. In: Coleman JR (ed), Development of Sensory Systems in Mammals. New York: Wiley, pp. 205–247.

    Google Scholar 

  • Collins F, Schmidt MF, Guthrie PB, Kater SB (1991) Sustained increase in intracellular calcium promotes neuronal survival. J Neurosci 11: 2582–2587.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Cline HT (1998) LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr Opin Neurobiol 8: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Fraser SE, Rubel EW (2000a) Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Dev Biol 224: 138–151.

    Article  PubMed  CAS  Google Scholar 

  • Cramer KS, Rosenberger MH, Frost DM, Cochran SL, Pasquale EB, Rubel EW (2000b) Developmental regulation of EphA4 expression in the chick auditory brainstem. J Comp Neurol 426: 270–278.

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, Katz LC (1999) Development of ocular dominance columns in the absence of retinal input. Nat Neurosci 2: 1125–1130.

    Article  PubMed  CAS  Google Scholar 

  • Cutforth T, Harrison CJ (2002) Ephs and ephrins close ranks Trends Neurosci 25: 332–334.

    Article  CAS  Google Scholar 

  • Dan Y, Poo M (1994) Retrograde interactions during formation and elimination of neuromuscular synapses. Curr Opin Neurobiol 4: 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Dan Y, Lo Y, Poo M (1995) Plasticity of developing neuromuscular synapses. Prog Brain Res 105: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Deitch JS, Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229: 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (1992) Development of auditory evoked potentials. Acta Otolaryngol (Stockh) 112: 197–200.

    CAS  Google Scholar 

  • Ehrlich I, Lohmann C, Ilic V, Friauf E (1998) Development of glycinergic transmission in organotypic cultures from auditory brain stem. NeuroReport 9: 2785–2790.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich I, Löhrke S, Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurons is due to age-dependent CI- regulation. J Physiol (Lond) 520: 121–137.

    Article  CAS  Google Scholar 

  • Ellenberger C, Hanaway J, Netsky MG (1969) Embryogenesis of the inferior olivary nucleus in the rat: a radioautographic study and a re-evaluation of the rhombic lip. J Comp Neurol 137: 71–88.

    Article  PubMed  Google Scholar 

  • Elliott T, Shadbolt NR (1998) A model of activity-dependent anatomical inhibitory plasticity applied to the mammalian auditory system. Biol Cybern 78: 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol 171: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189: 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Finck ACD, Schneck CD, Hartman AF (1972) Development of cochlear function in the neonate Mongolian gerbil (Meriones unguiculatus). J Comp Physiol Psychol 78: 375380.

    Google Scholar 

  • Fitzgerald KK, Sanes DH (1999) Serotonergic modulation of synapses in the developing gerbil lateral superior olive. J Neurophysiol 81: 2743–2752.

    PubMed  CAS  Google Scholar 

  • Flanagan JG, van der Haeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21: 309–345.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe ID (1994) Direct patch recording from identified presynaptic terminals medi- ating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol (Lond) 479: 381–387.

    Google Scholar 

  • Franklin JL, Sanz-Rodriguez C, Juhasz A, Deckwerth TL, Johnson EM Jr (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Cat+ influx but not Trk activation. J Neurosci 15: 643–664.

    PubMed  CAS  Google Scholar 

  • Frech MJ, Deitmer JW, Backus KH (1999) Intracellular chloride and calcium transients evoked by y-aminobutyric acid and glycine in neurons of the rat inferior colliculus. J Neurobiol 40: 386–396.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Eur J Neurosci 4: 798–812.

    Article  PubMed  Google Scholar 

  • Friauf E (1993) Transient appearance of calbindin-1328, positive neurons in the superior olivary complex of developing rats. J Comp Neurol 334: 59–74.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E (1994) Distribution of calcium-binding protein Calbindin-D28k in the auditory system of adult and developing rats. J Comp Neurol 349: 193–211.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E (2000) Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties. Audiol Neurootol 5: 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Kandler K (1990) Auditory projections to the inferior colliculus of the rat are present by birth. Neurosci Lett 120: 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intraaxonal injection of horseradish peroxidase. Exp Brain Res 73: 263–284.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Hammerschmidt B, Kirsch J (1997) Development of adult-type inhibitory gly- cine receptors in the central auditory system of rats. J Comp Neurol 385: 117–134.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Aragon C, Löhrke S, Westenfelder B, Zafra F (1999) Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation. J Comp Neurol 412: 17–37.

    Article  PubMed  CAS  Google Scholar 

  • Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hearing Res 69: 236–242.

    Article  CAS  Google Scholar 

  • Gerken GM (1979) Central denervation hypersensitivity in the auditory system of the cat. J Acoust Soc Am 66: 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263: 1618–1623.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61: 581–610.

    Article  PubMed  CAS  Google Scholar 

  • Grothe B, Park TJ (2000) Structure and function of the bat superior olivary complex. Microsc Res Techn 51: 382–402.

    Article  CAS  Google Scholar 

  • Gummer AW, Mark RF (1994) Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). NeuroReport 5: 685688.

    Google Scholar 

  • Hafidi A, Katz JA, Sanes DH (1996a) Differential expression of MAG, MBP and L1 in the developing lateral superior olive. Brain Res 736: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Hafidi A, Moore T, Sanes DH (1996b) Regional distribution of neurotrophin receptors in the developing auditory brainstem. J Comp Neurol 367: 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Harkmark W (1954) Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons. A morphological and experimental investigation on chick embryos. J Comp Neurol 100: 115–209.

    Article  PubMed  CAS  Google Scholar 

  • Hegarty JL, Kay AR, Green SH (1997) Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+1, within a set range. J Neurosci 17: 1959–1970.

    PubMed  CAS  Google Scholar 

  • Held H (1893) Die zentrale Gehörleitung. Arch Anat Physiol, Anat Abt 17: 201–248.

    Google Scholar 

  • Helfert RH, Snead CR, Altschuler RA (1991) The Ascending Auditory Pathways. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 1–25.

    Google Scholar 

  • Hendriks R, Morest DK, Kaczmarek LK (1999) Role in neuronal cell migration for high-threshold potassium currents in the chicken hindbrain. J Neurosci Res 15: 805814.

    Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1990) Dendritic morphology and development in the ferret medial superior olivary nucleus. J Comp Neurol 294: 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1991) Dendritic morphology and development in the ferret lateral superior olivary nucleus. J Comp Neurol 313: 259–272.

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1993) Laterality of superior olive projections to the inferior colliculus in adult and developing ferret. J Comp Neurol 331: 458–468.

    Article  PubMed  CAS  Google Scholar 

  • His W (1889) Die Neuroblasten and deren Entstehung im embryonalen Mark. Abh Ges Wissensch Math Phys Kl 15: 311–372.

    Google Scholar 

  • Honig MG, Hume RI (1989) Dil and DiO: versatile fluorescent dyes for neuronal labeling and pathway tracing. Trends Neurosci 12: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Horvath M, Forster CR, Illing RB (1997) Postnatal development of GAP-43 immunoreactivity in the auditory brainstem of the rat. J Comp Neurol 382: 104–115.

    Article  PubMed  CAS  Google Scholar 

  • Illing RB (2001) Activity-dependent plasticity in the adult auditory brainstem. Audiol Neuro-Otol 6: 319–345.

    Article  CAS  Google Scholar 

  • Illing RB, Horvath M, Laszig R (1997) Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol 382: 116138.

    Google Scholar 

  • Illing RB, Cao QL, Forster CR, Laszig R (1999) Auditory brainstem: development and plasticity of GAP-43 mRNA expression in the rat. J Comp Neurol 412: 353–372.

    Article  PubMed  CAS  Google Scholar 

  • Illing RB, Kraus KS, Michler SA (2000) Plasticity of the superior olivary complex. Microsc Res Techn 51: 364–381.

    Article  CAS  Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: a comparative study. J Comp Neurol 130: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova A, Yuasa S (1998) Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus. Dev Neurosci 20: 495–511.

    Article  PubMed  CAS  Google Scholar 

  • Jackson H, Parks TN (1982) Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve branching. J Neurosci 2: 1736–1743.

    PubMed  CAS  Google Scholar 

  • Jackson H, Parks TN (1988) Induction of aberrant functional afferents to the chick cochlear nucleus. J Comp Neurol 271: 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Jean-Baptiste M, Morest DK (1975) Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J Comp Neurol 162: 111–134.

    Article  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZD, Tierney TS (1995) Development of human peripheral hearing revealed by brainstem auditory evoked potentials. Acta Paediat 84: 1216–1220.

    Article  PubMed  CAS  Google Scholar 

  • Jin Y (2002) Synaptogenesis: insights from worm and fly. Curr Opin Neurobiol 12: 7179.

    Article  Google Scholar 

  • Johnston D, Williams S, Jaffe D, Gray R (1992) NMDA-receptor independent long-term potentiation. Annu Rev Physiol 54: 489–505.

    Article  PubMed  CAS  Google Scholar 

  • Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21: 1235–1238.

    Article  PubMed  CAS  Google Scholar 

  • Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19: 2843–2851.

    PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1993) Pre-and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328: 161–184.

    Article  PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1995a) Development of electrical membrane properties and discharge characteristics of superior olivary complex neurons in fetal and postnatal rats. Eur J Neurosci 7: 1773–1790.

    Article  PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1995b) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15: 6890–6904.

    PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274: 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Kelly JB (1992) Behavioral development of the auditory orientation response. In: Romand R (ed), Development of Auditory and Vestibular Systems 2. Amsterdam, London, New York, Tokyo: Elsevier, pp. 391–418.

    Google Scholar 

  • Kil J, Kageyama GH, Semple MN, Kitzes LM (1995) Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. J Comp Neurol 353: 317–340.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Morest DK, Bohne BA (1997) Degeneration of axons in the brainstem of chinchilla after auditory overstimulation. Hear Res 103: 169–191.

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM (1990) Development of auditory system physiology. In: Coleman JR (ed), Development of Sensory Systems in Mammals. New York: Wiley, pp. 249288.

    Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353: 341–363.

    Article  PubMed  CAS  Google Scholar 

  • Knöll B, Drescher U (2002) Ephrin-As as receptors in topographic projections. Trends Neurosci 25: 145–149.

    Article  PubMed  Google Scholar 

  • Koike T, Tanaka S (1991) Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Cat±. Proc Natl Acad Sci USA 88: 3892–3896.

    Article  PubMed  CAS  Google Scholar 

  • Korada S, Schwartz IR (1999) Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J Comp Neurol 409: 664–681.

    Article  PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1995) Synaptically evoked prolonged depolarizations in the developing auditory system. J Neurophysiol 74: 1611–1620.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16: 1836–1843.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1997) Deafferentation weakens excitatory synapses in the developing central auditory system. Eur J Neurosci 9: 2340–2347.

    Article  PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (2000) Long-lasting inhibitory synaptic depression is age-and calcium-dependent. J Neurosci 20: 5820–5826.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18: 46464655.

    Google Scholar 

  • Krause WJ (1998) A Review of Histogenesis/Organogenesis in the Developing North American Opossum (Didelphis virginiana). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Kudo M, Kitao Y, Okoyama S, Moriya M, Kawano J (1996) Crossed projection neurons are generated prior to uncrossed projection neurons in the lateral superior olive of the rat. Dev Brain Res 95: 72–78.

    Article  CAS  Google Scholar 

  • Kudo M, Sakurai H, Kurokawa K, Yamada H (2000) Neurogenesis in the superior olivary complex in the rat. Hear Res 139: 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Kullmann PHM, Ene FA, Kandler K (2002) Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur J Neurosci 15: 1093–1104.

    Article  PubMed  Google Scholar 

  • Kungel M, Friauf E (1995) Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development. Anat Embryol 191: 425–443.

    Article  PubMed  CAS  Google Scholar 

  • Kungel M, Piechotta K, Rietzel H-J, Friauf E (1997) Influence of the neuropeptide somatostatin on the development of dendritic morphology: a cysteamine-depletion study in the rat auditory brainstem. Dev Brain Res 101: 107–114.

    Article  CAS  Google Scholar 

  • Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Cat+-oscillations mediated by the synergistic excitatory actions of GABA and NMDA receptors in the neonatal hippocampus. Neuron 18: 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir M, Shnerson A, Pujol R (1980) Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol 160: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir M, Puel J-L, Pujol R (1987) Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol 175: 477–487.

    Google Scholar 

  • Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91: 209–242.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ, Anniko M (1985) Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol Suppl 422: 1–69.

    Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14: 1486–1495.

    PubMed  CAS  Google Scholar 

  • Lohmann C, Friauf E (1996) Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J Comp Neurol 367: 90–109.

    Article  PubMed  CAS  Google Scholar 

  • Lohmann C, Ilic V, Friauf E (1998) Development of a topographically organized auditory network in slice culture is calcium dependent. J Neurobiol 34: 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Löhrke S, Kungel M, Friauf E (1998) Electrical membrane properties of trapezoid body neurons in the rat auditory brainstem are preserved in organotypic slice cultures. J Neurobiol 36: 395–409.

    Article  PubMed  Google Scholar 

  • Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39: 558568.

    Google Scholar 

  • Lurie DI, Pasic TR, Hockfield SJ, Rubel EW (1997) Development of Cat-301 immu-noreactivity in auditory brainstem nuclei of the gerbil. J Comp Neurol 380:319–334. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16: 521–527.

    Google Scholar 

  • Martin MR, Rickets C (1981) Histogenesis of the cochlear nucleus of the mouse. J Comp Neurol 197: 169–184.

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK (1999) Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity? Proc Natl Acad Sci USA 96: 13600–13602.

    Article  PubMed  CAS  Google Scholar 

  • McFadden SL, Walsh EJ, McGee J (1996) Onset and development of auditory brainstem responses in the Mongolian gerbil (Meriones unguiculatus). Hear Res 100: 68–79.

    Article  PubMed  CAS  Google Scholar 

  • Melcher JR, Kiang NYS (1996) Generators of the brainstem auditory evoked potential in cat. III. Identified cell populations. Hear Res 93: 52–71.

    Google Scholar 

  • Moore DR (1982) Late onset of hearing in the ferret. Brain Res 253: 309–311.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1983) Development of inferior colliculus and binaural audition. In: Romand R (ed), Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 121–166.

    Google Scholar 

  • Moore DR (1991) Development and plasticity of the ferret auditory system. In: Altschuler RA, et al. (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 461–475.

    Google Scholar 

  • Moore DR (1992a) Developmental plasticity of the brainstem and midbrain auditory nuclei. In: Romand R (ed), Development of Auditory and Vestibular Systems. Amsterdam: Elsevier, pp. 298–320.

    Google Scholar 

  • Moore DR (1992b) Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brain stem. NeuroReport 3: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwickl-Gesch 127: 201–220.

    Article  CAS  Google Scholar 

  • Morest DK, Kim JN, Bohne BA (1997) Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns. Hear Res 103: 151–168.

    Article  PubMed  CAS  Google Scholar 

  • Morey AL, Carlile S (1990) Auditory brainstem of the ferret: maturation of the brainstem auditory evoked response. Dev Brain Res 52: 279–288.

    Article  CAS  Google Scholar 

  • Moushegian G, Rupert A, Whitcomb MA (1967) Stimulus coding by medial superior olivary neurons. J Neurophysiol 30: 1239–1261.

    PubMed  CAS  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22: 351–388.

    Article  PubMed  CAS  Google Scholar 

  • Niblock MM, Brunso-Bechtold JK, Henkel CK (1995) Fiber outgrowth and pathfinding in the developing auditory brainstem. Dev Brain Res 85: 288–292.

    Article  CAS  Google Scholar 

  • Oblinger MM, Das GD (1981) Neurogenesis in the brain stem of the rabbit: an autoradiographic study. J Comp Neurol 197: 45–62.

    Article  PubMed  CAS  Google Scholar 

  • Obrietan K, van den Pol AN (1995) GABA neurotransmission in the hypothalamus: developmental reversal from Cat+ elevating to depressing. J Neurosci 15: 5065–5077.

    PubMed  CAS  Google Scholar 

  • O’Leary DDM (1992) Development of connectional diversity and specificity in the mammalian brain by the pruning of collateral projections. Curr Opin Neurobiol 2: 70–77.

    Article  PubMed  Google Scholar 

  • O’Leary DDM, Bicknese AR, De Carlos JA, Heffner CD, Koester SE, Kutka LJ, Terashima T (1990) Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain. In: Cold Spring Harb Symp Quant Biol Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 453–468.

    Google Scholar 

  • O’Leary DDM, Ruff NL, Dyck RH (1994) Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol 4: 535–544.

    Article  PubMed  Google Scholar 

  • Osen KK, Mugnaini E, Dahl A-L, Christiansen AH (1984) Histochemical localization of acetylcholinesterase in the cochlear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cell system. Arch Ital Biol 122: 169–212.

    Google Scholar 

  • Ostapoff EM, Benson CG, Saint Marie RL (1997) GABA- and glycine-immunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. J Comp Neurol 381: 500–512.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN (1981) Changes in the length and organization in nucleus laminais dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol 202: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN, Collins P, Conlee JW (1983) Morphology and origin of axonal endings in nucleus laminaris of the chicken. J Comp Neurol 214: 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN, Gill SS, Jackson H (1987) Experience-independent development of dendritic organization in the avian nucleus laminaris. J Comp Neurol 260: 312.

    Article  PubMed  CAS  Google Scholar 

  • Pasic TR, Moore DR, Rubel EW (1994) Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. J Comp Neurol 348: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Potashner SJ, Suneja SK, Benson CG (1997) Regulation of D-aspartate release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlea ablation. Exp Neurol 148: 222–235.

    Article  PubMed  CAS  Google Scholar 

  • Powell TPS, Erulkar SD (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat 96: 268.

    Google Scholar 

  • Puel JL, Uziel A (1987) Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Brain Res 465: 179–188.

    PubMed  CAS  Google Scholar 

  • Reichling DB, Kyrozis A, Wang J, Mac Dermott AB (1994) Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol (Lond) 476: 411–421.

    CAS  Google Scholar 

  • Reuss S (2000) Introduction to the superior olivary complex. Microsc Res Technique 51: 303–306.

    Article  CAS  Google Scholar 

  • Rietzel H-J, Friauf E (1998) Neuron types in the rat lateral superior olive and developmen- tal changes in the complexity of their dendritic arbors. J Comp Neurol 390: 20–40.

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/C1- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397: 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Robertson D (1996) Physiology and morphology of cells in the ventral nucleus of trapezoid body and rostral periolivary regions of the rat superior olivary complex studied in slices. Audit Neurosci 2: 15–31.

    Google Scholar 

  • Rogowski BA, Feng AS (1981) Normal postnatal development of medial superior olivary neurons in the albino rat: a Golgi and Nissl study. J Comp Neurol 196: 8597.

    Article  Google Scholar 

  • Roth B, Bruns V (1992a) Postnatal development of the rat organ of Corti. I. General morphology, basilar membrane, tectorial membrane and border cells. Anat Embryol 185: 559–569.

    Google Scholar 

  • Roth B, Bruns V (1992b) Postnatal development of the rat organ of corti. H. Hair cell receptors and their supporting elements. Anat Embryol 185: 571–581.

    Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobsen M (ed), Handbook of Sensory Physiology. New York: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Rubel EW, Parks TN (1988) Organization and development of the avian brain-stem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds), Auditory Function. Neurobiological Bases of Hearing. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley, pp. 3–92.

    Google Scholar 

  • Ruben RJ (1992) The ontogeny of human hearing. Acta Otolaryngol (Stockh) 112: 192–196.

    CAS  Google Scholar 

  • Ruben RJ, Rapin I (1980) Plasticity of the developing auditory system. Ann Otol Rhinol Laryngol 89: 303–311.

    PubMed  CAS  Google Scholar 

  • Rübsamen R, Gutowski M, Langkau J, Dörrscheidt GJ (1994) Growth of central nervous system auditory and visual nuclei in the postnatal gerbil (Meriones unguiculatus). J Comp Neurol 346: 289–305.

    Article  PubMed  Google Scholar 

  • Russell FA, Moore DR (1995) Afferent reorganisation within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal. J Comp Neurol 352: 607–625.

    Article  PubMed  CAS  Google Scholar 

  • Russell FA, Moore DR (1999) Effects of unilateral cochlear removal on dendrites in the gerbil medial superior olivary nucleus. Eur J Neurosci 11: 1379–1390.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13: 2627–2637.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Chokshi P (1992) Glycinergic transmission influences the development of dendrite shape. NeuroReport 3: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Hafidi A (1996) Glycinergic transmission regulates dendrite size in organotypic culture. J Neurobiol 31: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Rubel EW (1988) The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J Neurosci 8: 682–700.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Siverls V (1991) Development and specificity of inhibitory terminal arborizations in the central nervous system. J Neurobiol 8: 837–854.

    Article  Google Scholar 

  • Sanes DH, Takâcs C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Walsh EJ (1998) The development of central auditory processing. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 271–314.

    Chapter  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J, Wardlow J (1992a) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321: 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Song J, Tyson J (1992b) Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Dev Brain Res 67: 47–55.

    Article  CAS  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (2000) Development of the Nervous System. San Diego: Academic Press.

    Google Scholar 

  • Sato K, Kiyama H, Tohyama M (1992) Regional distribution of cells expressing glycine receptor a2 subunit mRNA in the rat brain. Brain Res 590: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Kuriyama H, Altschuler RA (1995) Expression of glycine receptor subunits in the cochlear nucleus and superior olivary complex using non-radioactive in-situ hybridization. Hearing Res 91: 7–18.

    Article  CAS  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nucleus of the chick. Brain Res 63: 59–74.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 3–25.

    Google Scholar 

  • Schofield BR, Cant NB (1991) Organization of the superior olivary complex in the guinea pig. I. Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology. J Comp Neurol 314: 645–670.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Chapter  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1992) How are specific connections formed between thalamus and cortex? Cur Opin Neurobiol 2: 78–82.

    Article  CAS  Google Scholar 

  • Shatz CJ (1996) Emergence of order in visual system development. Proc Natl Acad Sci USA 93: 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Silverman MS, Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40: 1266–1274.

    Google Scholar 

  • Smith DI, Kraus N (1987) Postnatal development of the auditory brainstem response ( ABR) in the unanesthetized gerbil. Hear Res 27: 157–164.

    Google Scholar 

  • Smith ZDJ (1981) Organization and development of brain stem auditory nuclei of the chicken: dendritic development in n. laminaris. J Comp Neurol 203: 309–333.

    Article  PubMed  CAS  Google Scholar 

  • Smith ZDJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186: 213–239.

    Article  PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB (1991) The Descending Auditory System. In: Altschuler RA

    Google Scholar 

  • Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 27–45.

    Google Scholar 

  • Suneja SK, Potashner SJ, Benson CG (1998) Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 151: 273–288.

    Article  PubMed  CAS  Google Scholar 

  • Taber-Pierce E (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse: an autoradiographic study. J Comp Neurol 131: 27–54.

    Article  Google Scholar 

  • Taber-Pierce E (1973) Time of origin of neurons in the brain stem of the mouse. In: Ford DH (ed) Neurological Aspects of Maturation and Aging. Progress in Brain Res. Amsterdam: Elsevier, pp. 53–65.

    Chapter  Google Scholar 

  • Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9: 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Julius D (1999) A new wave of serotonin receptors. Curr Opin Neurobiol 3: 310–315.

    Article  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274: 1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM (1998) Heterogeneous projections of the cat posteroventral cochlear nucleus. J Comp Neurol 390: 439–453.

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303: 267–285.

    Article  PubMed  CAS  Google Scholar 

  • Thoss VS, Kungel M, Friauf E, Hoyer D (1996) Presence of somatostatin sstz receptors in the developing rat auditory system. Dev Brain Res 97: 269–278.

    Article  CAS  Google Scholar 

  • Tokimoto T, Osako S, Matsuura S (1977) Development of auditory evoked cortical and brain stem responses during the early postnatal period in the rat. Osaka City Med J 23: 141–153.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7: 3031–3052.

    Article  PubMed  CAS  Google Scholar 

  • Uziel A, Romand R, Marot M (1981) Development of cochlear potentials in rats. Audiology 20: 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J (1988) Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. Hear Res 36: 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neurosci 18: 3859–3869.

    PubMed  CAS  Google Scholar 

  • Warr WB (1972) Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res 40: 247–270.

    Article  PubMed  CAS  Google Scholar 

  • Wan WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds), Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–418.

    Google Scholar 

  • Webster DB, Webster M (1977) Neonatal sound deprivation affects brainstem auditory nuclei. Arch Otolaryngol 103: 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Weliky M, Katz LC (1997) Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ (1991) Neurotransmitters of brainstem auditory nuclei. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 121–139.

    Google Scholar 

  • Willard FH (1995) Development of the mammalian auditory hindbrain. In: Malhotra BS (ed), Advances in Neural Science. Greenwich CT: JAI Press, pp. 205–234.

    Chapter  Google Scholar 

  • Willard FH, Martin GF (1986) The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum. J Comp Neurol 248: 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Wong WT, Faulkner-Jones BE, Sanes JR, Wong ROL (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J Neurosci 20: 5024–5036.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1985) Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil. Dev Brain Res 17: 131–147.

    Article  Google Scholar 

  • Yin TCT (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay RR, Popper AN (eds), Integrative Functions in the Mammalian Auditory Pathway. New York: Springer-Verlag, pp. 99–159.

    Chapter  Google Scholar 

  • Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4: 1169–1176.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friauf, E. (2004). Developmental Changes and Cellular Plasticity in the Superior Olivary Complex. In: Parks, T.N., Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Plasticity of the Auditory System. Springer Handbook of Auditory Research, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4219-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4219-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1932-8

  • Online ISBN: 978-1-4757-4219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics