Advertisement

Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi

  • J. M. Borwein
  • P. B. Borwein
  • D. H. Bailey
Chapter

Abstract

The year 1987 was the centenary of Ramanujan’s birth. He died in 1920 Had he not died so young, his presence in modern mathematics might be more immediately felt. Had he lived to have access to powerful algebraic manipulation software, such as MACSYMA, who knows how much more spectacular his already astonishing career might have been.

Keywords

Fast Fourier Transform Discrete Fourier Transform Galois Group Theta Function Modular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.zbMATHGoogle Scholar
  2. 2.
    D. H. Bailey, The Computation of π to 29.360,000 decimal digits using Borweins’ quartically convergent algorithm, Math. Cormput., 50 (1988) 283–96.zbMATHGoogle Scholar
  3. 3.
    D. H. Bailey, Numerical results on the transcendence of constants involving π, e. and Euler’s constant, Math. Comput., 50 (1988) 275–81.zbMATHGoogle Scholar
  4. 4.
    A. Baker, Transcendental Number Theory, Cambridge Univ. Press, London, 1975.CrossRefzbMATHGoogle Scholar
  5. 5.
    P. Beckmann, A History of Pi, 4th ed., Golem Press, Boulder, CO, 1977.Google Scholar
  6. 6.
    R. Bellman, A Brief Introduction to Theta Functions, Holt, Reinhart and Winston, New York, 1961.Google Scholar
  7. 7.
    B. C. Berndt, Modular Equations of Degrees 3, 5, and 7 and Associated Theta Functions Identities, chapter 19 of Ramanujan’s Second Notebook, Springer-to be published.Google Scholar
  8. 8.
    A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems, American Elsevier, New York, 1975.zbMATHGoogle Scholar
  9. 9.
    J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev., 26 (1984), 351–365.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    , An explicit cubic iteration for pi, BIT, 26 (1986) 123–126.Google Scholar
  11. 11.
    , Pi and the AGM-A Study in Analytic Number Theory and Computational Complexity, Wiley, N.Y., 1987.Google Scholar
  12. 12.
    R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM, 23 (1976) 242–251.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1974.zbMATHGoogle Scholar
  14. 14.
    A. Cayley, An Elementary Treatise on Elliptic Functions, Bell and Sons, 1885; reprint Dover, 1961.zbMATHGoogle Scholar
  15. 15.
    A. Cayley, A memoir on the transformation of elliptic functions, Phil. Trans. T., 164 (1874) 397–456.CrossRefGoogle Scholar
  16. 16.
    D. V. Chudnovsky and G. V. Chudnovsky, Padé and Rational Approximation to Systems of Functions and Their Arithmetic Applications, Lecture Notes in Mathematics 1052, Springer, Berlin, 1984.Google Scholar
  17. 17.
    H. R. P. Ferguson and R. W. Forcade, Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two, Bull. AMS, 1 (1979) 912–914.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    C. F. Gauss, Werke, Göttingen 1866–1933, Bd 3, pp. 361–403.Google Scholar
  19. 19.
    G. H. Hardy, Ramanujan, Cambridge Univ. Press, London, 1940.Google Scholar
  20. 20.
    L. V. King, On The Direct Numerical Calculation of Elliptic Functions and Integrals, Cambridge Univ. Press, 1924.Google Scholar
  21. 21.
    F. Klein, Development of Mathematics in the 19th Century, 1928, Trans Math Sci. Press, R. Hermann ed., Brookline, MA, 1979.zbMATHGoogle Scholar
  22. 22.
    D. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1981.Google Scholar
  23. 23.
    F. Lindemann, Über die Zahl π, Math. Ann., 20 (1882) 213–225.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    G. Miel, On calculations past and present: the Archimedean algorithm, Amer. Muth. Monthly, 90 (1983) 17–35.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    D. J. Newman, Rational Approximation Versus Fast Computer Methods, in Lectures on Approximation and Value Distribution, Presses de l’Université de Montreal, 1982, pp. 149–174.Google Scholar
  26. 26.
    S. Ramanujan, Modular equations and approximations to ππ, Quurt. J. Math, 45 (1914) 350–72.Google Scholar
  27. 27.
    E. Salamin, Computation of π using arithmetic-geometric mean, Math. Comput., 30 (1976) 565–570.zbMATHMathSciNetGoogle Scholar
  28. 28.
    B. Schoenberg, Elliptic Modular Functions, Springer, Berlin, 1976.Google Scholar
  29. 29.
    A. Schönhage and V. Strassen, Schnelle Multiplikation Grosser Zahlen, Computing, 7 (1971) 281–292.CrossRefzbMATHGoogle Scholar
  30. 30.
    D. Shanks, Dihedral quartic approximations and series for π, J. Number Theory, 14 (1982) 397–423.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    D. Shanks and J. W. Wrench, Calculation ofπ to 100,000 decimals, Math Comput., 16 (1962) 76–79.zbMATHMathSciNetGoogle Scholar
  32. 32.
    W. Shanks, Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 607 Places of Decimals, G. Bell, London, 1853.Google Scholar
  33. 33.
    Y. Tamura and Y. Kanada, Calculation of ππ to 4.196.393 decimals based on Gauss-Legendre algorithm, preprint (1983).Google Scholar
  34. 34.
    J. Tannery and J. Molk, Fonctions Elliptiques, vols. 1 and 2, 1893; reprint Chelsea, New York, 1972.Google Scholar
  35. 35.
    S. Wagon, Is ππ normal?, The Math Intelligencer, 7 (1985) 65–67.MathSciNetGoogle Scholar
  36. 36.
    G. N. Watson, Some singular moduli (1), Quart. J. Math., 3 (1932) 81–98.CrossRefGoogle Scholar
  37. 37.
    G. N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55–80.CrossRefGoogle Scholar
  38. 38.
    H. Weber, Lehrbuch der Algebra, Vol. 3, 1908; reprint Chelsea, New York, 1980.Google Scholar
  39. 39.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed, Cambridge Univ. Press, London, 1927.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • J. M. Borwein
    • 1
  • P. B. Borwein
    • 1
  • D. H. Bailey
    • 2
  1. 1.Mathematics DepartmentDalhousie UniversityHalifax, N.S.Canada
  2. 2.NASA Ames Research CenterMoffen FieldUSA

Personalised recommendations