The evolution of extended decimal approximations to π

  • J. W. WrenchJr.
Chapter

Abstract

In his historical survey of the classic problem of “squaring the circle,” Professor E. W. Hobson [1]* distinguished three distinct periods, characterized by funda mental differences in method, immediate aims, and available mathematical tools.

Keywords

Mathematics Teacher Decimal Place Decimal Digit Desk Calculator Coupon Collector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Hobson, “Squaring the Circle,” a His tory of the Problem (Cambridge, 1913; re printed by Chelsea Publishing Company, New York, 1953).MATHGoogle Scholar
  2. 2.
    J. H. Lambert, “Mémoiresur quelques pro priétés rémarquables des quantités tran scendentes circulates et logarithmiques,” Histoire de lAcadémie de Berlin, 1761 (1768).Google Scholar
  3. 3.
    F. Lindemann, “Ueber die Zahl π,” Malhe malische Annalen, 20 (1882), 213–225.MATHMathSciNetGoogle Scholar
  4. 4.
    J. Wallis, Arithmetica Infinitorum (1655).Google Scholar
  5. 5.
    R. C. Archibald, Outline of the History of Mathematics (6th ed.; Buffalo, N. Y.: The Mathematical Association of America, 1949), p. 40.Google Scholar
  6. 6.
    Letter from Newton to Oldenburg dated October 24, 1676.Google Scholar
  7. 7.
    E. Beutel, Die Quadratur des Kreises (Leipzig, 1920), p. 40. See also E. W. Hobson,1 p. 39.MATHGoogle Scholar
  8. 8.
    II. Siierwin, Mathematical Tables (London, 1705), p. 59.Google Scholar
  9. 9.
    F. de Lagny, “Mémoire Sur la Quadrature du Circle, & sur la mesure de tout Arc, tout Secteur, & tout Segment donns,” Histoire de l’Académie Royale des Sciences, 1719 (Paris, 1721), pp. 135–145.Google Scholar
  10. 10.
    Y. Mikami, The Development of Mathematics in China and Japan (Leipzig, 1913), p. 202 and p. 141.Google Scholar
  11. 11.
    G. Vega, Thesaurus Logarithmorum Com pletus (Leipzig, 1794; reprinted by G. E. Stechert & Co., New York, 1946), p. 633.Google Scholar
  12. 12.
    W. Rutherford, “Computation of the Ra tio of the Diameter of a Circle to its Cir cumference to 208 places of figures,”; Philo sophical Transactions of the Royal Society of London, 131 (1841), 281–283.CrossRefGoogle Scholar
  13. 13.
    Z. Dahsb, “Der Kreis-Umfang für den Durchmesser 1 auf 200 Decimalstellen be rechnet,” Journal für die reine und ange-wandte Mathematik, 27 (1844), 198.CrossRefGoogle Scholar
  14. 14.
    Philosophical Transactions of the Royal Society of London, 46 (1776), 476–492.Google Scholar
  15. 15.
    W. Lehmann, “Beitrag zur Berechnung der Zahl π, welche das Yerhaltniss des Kreis Durchmessers zum Umfang ausdrtlckt,” Archiv der Mathematik und Physik, 21 (1853), 121–174.Google Scholar
  16. 16.
    Y. Mikami,10 pp. 141–142.Google Scholar
  17. 17.
    Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 9 (1790), 41.Google Scholar
  18. 18.
    Astronomische Nachrichien, 25 (1847), col. 207–210.Google Scholar
  19. 19.
    E. Frisby, “On the calculation of π,” Messenger of Mathematics, 2 (1873), 114–118.Google Scholar
  20. 20.
    S. L. Loney, Plane Trigonometry (Cam bridge, 1893), p. 277.Google Scholar
  21. 21.
    C. Störmer, “Sur Papplication de la theorie des nombres entiers complexes a la solution en nombres rationnels x 1, x 1, ···, x n c 1, c 2, ···, c n, k de l’éiquation c 1 arctg x 1+c 2arctg x 2 + ··· c n arctg x n = /4,” Archiv for Mathematik og Naturvidenskab, 19 (1896), 70.Google Scholar
  22. 22.
    D. F. Ferguson, “Value of π,” Nature, 157 (1946), 342.CrossRefMATHMathSciNetGoogle Scholar
  23. 22a.
    See also D. F. Ferguson, “Evaluation of p. Are Shanks figures cor rect?” Mathematical Gazette, 30 (1946), 89– 90.CrossRefGoogle Scholar
  24. 23.
    R. C. Archibald, “Approximations top π, ” Mathematical Tables and other Aids to Com putation, 2 (1946–1947), 143–145.Google Scholar
  25. 24.
    L. B. Smith, J. W. Wrench, Jr., and D. F. Ferguson, “A New Approximation to π,” Mathematical Tables and other Aids to Com putation, 2 (1946–1947), 245–248.CrossRefGoogle Scholar
  26. 25.
    D. F. Ferguson and J. W. Wrench, Jr., “A New Approximation to π (conclusion),” Mathematical Tables and other Aids to Com putation, 3 (1948–1949), 18–19.CrossRefMathSciNetGoogle Scholar
  27. 25a.
    See also R. Liénard, “Constanteamathéatiquesetsystème binaire,” Intermtéiaire des Recherches Mathématiques, 5 (1948), 75.Google Scholar
  28. 26.
    K. H. Schellbach, “Über den Ausdruck π = (2/i) log i,” Journal für diereineundange-wandte Malhemalik, 9 (1832), 404–406.MATHGoogle Scholar
  29. 27.
    C. C. Camp, “A New Calculation of π,” American Mathematical Monthly, 33 (1926), 474.CrossRefMathSciNetGoogle Scholar
  30. 28.
    D. H. Lehmer, “On Arccotangent Relations for π,” American Mathematical Monthly, 45 (1938), 657–664.CrossRefMathSciNetGoogle Scholar
  31. 29.
    G. E. Felton, “Electronic Computers and Mathematicians,” Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 8–18, 1967, p. 12–17; footnote, p. 12–53.Google Scholar
  32. 30.
    C. F. Gauss, Werke (Göttingen, 1863; 2nd ed., 1876), Vol, 2, p. 499–502.Google Scholar
  33. 31.
    J. P. Ballantine, “The Best (?) Formula for Computing π to a Thousand Places,” American Mathematical Monthly, 46 (1939), 499–501.CrossRefMathSciNetGoogle Scholar
  34. 32.
    W. Jones, Synopsis palmiorum matheseos (London, 1706), p. 263.Google Scholar
  35. 33.
    W. Rutherford, “On the Extension of the value of the ratio of the Circumference of a circle to its Diameter,” Proceedings of the Royal Society of London, 6 (1850–1854), 273–275. See also Nouvelles Annates des Matématiques, 14 (1855), 209–210.CrossRefGoogle Scholar
  36. 34.
    W. Shanks, Contributions to Mathematics, comprising chiefly the Rectification of the Circle to 607 Places of Decimals (London, 1853).Google Scholar
  37. 35.
    W. Shanks, “On the Extension of the Nu merical Value of π,” Proceedings of the Royal Society of London, 21 (1873), 318.CrossRefGoogle Scholar
  38. 36.
    W. Shanks, “On certain Discrepancies in the published numerical value of π,” Proceedings of the Royal Society of London, 22 (1873), 45–46.CrossRefMATHGoogle Scholar
  39. 37.
    Archiv der Mathemalik und Physik, 21 (1853), 119; 22 (1854), 473; 23 (1854), 475–476; 25 (1855), 471–472 (posthumous). See also Nouvelles Annates des Mathiématiques, 13 (1854), 418–423.Google Scholar
  40. 38.
    Comptes Rendus de V Acadimie des Sciences de Paris, Vol. 146, 1908. See also L’Inlermédiaire des Mathématiciens, 27 (1920), 108–109, and F. J. Duarte, Monografia sobre los Numeros π y e (Caracas, 1949).Google Scholar
  41. 39.
    H. S. Uhler, “Recalculation and Extension of the Modulus and of the Logarithms of 2, 3, 5, 7, and 17,” Proceedings of the National Academy of Sciences, 26 (1940), 205–212.CrossRefMATHMathSciNetGoogle Scholar
  42. 40.
    D. H. Lehmer, Review 275, Mathematical Tables and other Aids to Computation, 2 (1946–1947), 68–69.Google Scholar
  43. 41.
    J. W. Wrench, Jr., and L. B. Smith, “Values of the terms of the Gregory series for arccot 5 and arccot 239 to 1150 and 1120 decimal places, respectively,” Mathematical Tables and other Aids to Computation, 4 (1950), 160–161.CrossRefGoogle Scholar
  44. 42.
    G. Reitwiesner, “An ENIAC Determination of π and e to more than 2000 Decimal Places,” Mathematical Tables and other Aids to Computation, 4 (1950), 11–15.CrossRefMathSciNetGoogle Scholar
  45. 43.
    S. C. Nicholson and J. Jeenel, “Some Comments on a NORC Computation of π,” Mathematical Tables and other Aids to Computation, 9 (1955), 162–164.CrossRefMATHMathSciNetGoogle Scholar
  46. 44.
    F. Genuys, “Dix milles decimales de π,” Chiffres, 1 (1958), 17–22.MATHMathSciNetGoogle Scholar
  47. 45.
    P. S. Jones, “What’s New About π?,” The Mathematics Teacher, 43 (1950), 120–122.Google Scholar
  48. 46.
    A. De Morgan, A Budget of Paradoxes (1st ed., 1872; 2nd ed., Chicago: The Open Court Publishing Company, 1915), Vol. 2, p. 65. See also James R. Newman, The World of Mathematics (New York: Simon and Schuster, 1956), Vol. 4, pp. 2379–2380.MATHGoogle Scholar
  49. 47.
    E. B. Escott, Question 1154, L’ntermédiaire des Mathtmaticiens, 4 (1897), 221.MathSciNetGoogle Scholar
  50. 48.
    N. C. Metropolis, G. Reitwiesner, and J. von Neumann, “Statistical Treatment of the Values of First 2000 Decimal Digits of e and π Calculated on the ENIAC,” Mathe matical Tables and other Aids to Computa tion, 4 (1950), 109–111.CrossRefGoogle Scholar
  51. 49.
    R. E. Greenwood, “Coupon Collector’s Test for Random Digits,” Mathe matical Tables and other Aids to Computa tion, 9 (1955), 1–5.CrossRefMATHMathSciNetGoogle Scholar
  52. 50.
    F. Bukovsky, “The Digits in the Decimal Form of π,” The Mathematical Gazette, 33 (1949), 291.CrossRefGoogle Scholar
  53. 51.
    W. Hope-Jones, “Surprising,” ibid., Vol. 35, 1951.Google Scholar
  54. 52.
    E. H. Neville, “The Digits in the Decimal Form of π,” The Mathematical Gazette, 35 (1951), 44–45.CrossRefGoogle Scholar
  55. 53.
    B. C. Brookes, “On the Decimal for π,” The Mathematical Gazette, 36 (1952), 47–48.CrossRefGoogle Scholar
  56. 54.
    G. H. Hardy and E. M. Wright, An Intro duction to the Theory of Numbers (Oxford, 1938), pp. 123–127.Google Scholar
  57. 55.
    I. Niven, Irrational Numbers, Carus Mon ograph No. 11 (Buffalo, N. Y.: The Mathe matical Association of America, 1956), p. 112.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • J. W. WrenchJr.
    • 1
  1. 1.Applied Mathematics LaboratoryDavid Taylor Model BasinUSA

Personalised recommendations