Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 34))

  • 1381 Accesses

Abstract

Various physical problems are characterized by the presence of a small disturbance which, because of being active over a long time, has a non-negligible cumulative effect. For example, the effect of a small damping force over many periods of oscillation is to produce a decay in the amplitude of a linear oscillator. A fancier example having the same physical and mathematical features is the motion of a satellite around the earth, where the dominant force is a spherically symmetric gravitational field. If this were the only force acting on the satellite the motion would (for sufficiently low energies) be periodic. The presence of a thin atmosphere, a slightly non-spherical earth, a small moon, a distant sun, etc. all produce small but cumulative effects which after a sufficient number of orbits drastically alter the nature of the motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Poincaré. Les Methodes Nouvelles de la Mécanique Celeste, Vol. II, Dover, New York, 1957.

    Google Scholar 

  2. G. G. Stokes, On the Theory of Oscillatory Waves, Cambridge, Transactions, 8, 1847, pp. 441–473.

    Google Scholar 

  3. M. van Dyke, Perturbation Methods in Fluid Mechanics, Annotated Edition, Parabolic Press, Stanford, California, 1975.

    Google Scholar 

  4. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edition, Springer-Verlag, New York, 1971.

    Book  MATH  Google Scholar 

  5. Ph.D. thesis at Caltech. A brief version appears in the work of J. D. Cole and J. Kevorkian, Nonlinear Differential Equations and Nonlinear Mechanics, (LaSalle and Lefschetz, editors), New York, Academic Press, 1963, pp. 113–120.

    Google Scholar 

  6. N. M. Krylov, and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1957.

    Google Scholar 

  7. N. N. Bogoliubov, and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publishing Co., 1961.

    Google Scholar 

  8. Y. A. Mitropolsky, Problèmes de la Théorie Asymptotique des Oscillations non Stationnaires, Gauthier-Villars, Paris, 1966.

    Google Scholar 

  9. J. A. Morrison, Comparison of the Modified Method of Averaging and the Two Variable Expansion Procedure, S.I.A.M. Review 8, 1966, pp. 66–85.

    MATH  Google Scholar 

  10. R. A. Struble, Nonlinear Differential Equations, McGraw-Hill Book Co., New York, 1962.

    MATH  Google Scholar 

  11. H. von Zeipel, Recherche sur le Mouvement des Petites Planètes, Ark. Astron. Mat. Fys., 1916, 11–13.

    Google Scholar 

  12. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York, 1961.

    Google Scholar 

  13. J. Kevorkian, von Zeipel Method and the Two Variable Expansion Procedure, Astronomical Journal 71, 1966, pp. 878–885.

    Article  Google Scholar 

  14. F. A. Brauer and J. A. Nohel, The Qualitative Theory of Ordinary Differential Equations, W. A. Benjamin, Inc., Menlo Park, California, 1969.

    Google Scholar 

  15. N. W. McLachlan, Theory and Application of Mathieu Functions, Clarendon Press, Oxford, 1947.

    MATH  Google Scholar 

  16. C. S. Gardner, Adiabatic Invariants of Periodic Classical Systems, Physics Reviews 115, 1959, pp. 791–794.

    Article  Google Scholar 

  17. L. F. J. Broer and L. Wijngaarden, On the Motion of a Charged Particle in an Almost Homogeneous Magnetic Field, Applied Scientific Research B 8, No. 3, 1960, pp. 159–176.

    Article  MATH  Google Scholar 

  18. A. Erdelyi, Asymptotic Expansions, Dover Publications, New York, 1956.

    MATH  Google Scholar 

  19. Marquis de Laplace, Mécanique Céleste, Translated by Nathaniel Bowditch, Vol. 1, Book II, Chap. 15, p. 517. Hillard, Gray, Little, and Wilkins, Boston, Mass, 1829.

    Google Scholar 

  20. J. M. A. Danby, Fundamentals of Celestial Mechanics, Chapter 6. The Macmillan Co., New York, 1962.

    Google Scholar 

  21. R. A. Struble, A Geometrical Derivation of the Satellite Equation, J. Math. Anal. Appl. 1 (1960), p. 300.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Kevorkian, Lectures in Applied Mathematics, Vol. 7, Space Mathematics, Part III, American Mathematical Society, Providence, Rhode Island, 1966, pp. 206–275.

    Google Scholar 

  23. M. C.-Eckstein, Y. Y. Shi, and J. Kevorkian, Satellite motion for all inclinations around an oblate planet, Proceedings of Symposium No. 25, International Astronomical Union. Academic Press, New York, 1966, pp. 291–332.

    Google Scholar 

  24. M. C. Eckstein, Y. Y. Shi, and J. Kevorkian, Satellite motion for arbitrary eccentricity and inclination around the smaller primary in the restricted three-body problem, The Astronomical Journal 71, 1966, pp. 248–263.

    Article  Google Scholar 

  25. M. C. Eckstein, and Y. Y. Shi, Asymptotic solutions for orbital resonances due to the general geopotential, The Astronomical Journal 74, 1969, pp. 551–562.

    Article  Google Scholar 

  26. M. C. Eckstein, Y. Y. Shi, and J. Kevorkian, Use of the energy integral to evaluate higher-order terms in the time history of satellite motion, The Astronomical Journal 71, 1966, pp. 301–305.

    Article  Google Scholar 

  27. Victor Szebehely, Theory of Orbits, The Restricted Problem of Three Bodies, Academic Press, New York, 1967.

    Google Scholar 

  28. E. W. Brown, and C. A. Shook, Planetary Theory, Cambridge University Press, New York and London, 1933. Reprinted by Dover Publications, New York.

    Google Scholar 

  29. J. Kevorkian, The planar motion of a trojan asteroid, Periodic Orbits, Stability, and Resonances, G. E. O. Giacaglia, (editor), D. Reidel Publishing Company, Dordrecht, Holland 1970, pp. 283–303.

    Google Scholar 

  30. Balint Erdi, An asymptotic solution for the trojan case of the plane elliptic restricted problem of three bodies, Celestial Mechanics, Vol. 15, 1977, pp. 367–383.

    Article  MATH  Google Scholar 

  31. Balint Erdi, The three-dimensional motion of trojan asteroids, Celestial Mechanics 18, 1978, pp. 141–161.

    Article  MATH  Google Scholar 

  32. E. Rabe, Determination and survey of periodic trojan orbits in the restricted problem of three bodies, The Astronomical Journal 66, 1961, p. 500.

    Article  MathSciNet  Google Scholar 

  33. J. R. Gebman and D. L. Mingori, Perturbation solution for the flat spin recovery of a dual-spin spacecraft AIAA J. 14, No. 7. July 1976, pp. 859–867.

    Article  Google Scholar 

  34. J. R. Gebman, Perturbation analysis of the flat spin recovery of a dual-spin spacecraft, Ph.D. Dissertation. School of Engineering and Applied Science, University of California, Los Angeles, 1974.

    Google Scholar 

  35. H. Kabakow, A perturbation procedure for nonlinear oscillations, Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1968.

    Google Scholar 

  36. I. Gros, Resonance in a coupled oscillatory system, M.S. Thesis, University of Washington, Seattle, Washington, 1973.

    Google Scholar 

  37. G. Sandri, A new method of expansion in mathematical physics, Nuovo Cimento, B36, 1965, pp. 67–93.

    Google Scholar 

  38. W. Lick, Two-variable expansions and singular perturbation problems, S.I.A.M.J. on Applied Mathematics, 17, 1969, pp. 815–825.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Kevorkian, Passage through resonance for a one-dimensional oscillator with slowly varying frequency, S.I.A.M. Journal on Applied Mathematics 20, 1971, pp. 364–373. See also Errata in Vol. 26, 1974, p. 686.

    Google Scholar 

  40. J. Kevorkian, Resonance in a weakly nonlinear system with slowly varying parameters, Studies in Applied Mathematics 62, 1980, pp. 23–67.

    MathSciNet  MATH  Google Scholar 

  41. J. Kevorkian, On a model for reentry roll resonance, S.I.A.M. Journal on Applied Mathematics 26, 1974, pp. 638–669.

    Article  MATH  Google Scholar 

  42. L. Lewin and J. Kevorkian, On the problem of sustained resonance, S.I.A.M. Journal on Applied Mathematics 35, 1978, pp. 738–754.

    Article  MATH  Google Scholar 

  43. G. Contopoulos, A third integral of motion in a galaxy, Z. Astrophys. 49, 1960, p. 273.

    MathSciNet  MATH  Google Scholar 

  44. G.-I. Hori, Nonlinear coupling of two harmonic oscillations, Publications of the Astronomical Society of Japan 19, 1967, pp. 229–241.

    Google Scholar 

  45. E. T. Whittaker, Analytical Dynamics, Cambridge University Press, London and New York, 1904.

    MATH  Google Scholar 

  46. M. J. Ablowitz, B. A. Funk, and A. C. Newell, Semi resonant interactions and frequency dividers, Studies in Applied Mathematics L11, 1973, pp. 51–74.

    Google Scholar 

  47. Lord Rayleigh, Theory of Sound, Second Edition, Dover reprint, New York, 1945.

    Google Scholar 

  48. T. K. Caughey, Classical normal modes in damped linear systems, J. Appl. Mech. 82, Series E, 1960, pp. 269–271.

    Google Scholar 

  49. T. K. Caughey and M. E. J. O’Kelly, Classical normal modes in damped linear dynamic systems, J. Appl. Mech. 32, Series E, 1965, pp. 583–588.

    Google Scholar 

  50. J. Kevorkian, Adiabatic invariance and passage through resonance for nearly periodic Hamiltonian systems, Studies in Applied Mathematics, 66, 1982, pp. 95–119.

    MathSciNet  MATH  Google Scholar 

  51. 1] G. E. Kuzmak, Asymptotic solutions of nonlinear second order differential equations with variable coefficients, P.M.M. 23, 3 (1959), pp. 515–526. Also appears in English translation.

    Google Scholar 

  52. J. C. Luke, A perturbation method for nonlinear dispersive wave problems, Proc. Roy, Soc. Ser. A 292 (1966), pp. 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd Ed., Springer-Verlag, New York, 1971.

    Book  MATH  Google Scholar 

  54. N. M. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Acad. Sci., Ukrain. S.S.R, 1937. Translated by S. Lefschetz, Princeton University Press, Princeton, N.J., 1947.

    Google Scholar 

  55. N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publishing Corp., Delhi, India, 1961.

    Google Scholar 

  56. Y. A. Mitropolski, Problèmes de la Théorie Asymptotique des Oscillations Non Stationnaires, Translated by G. Carvallo, Gauthier—Villars, Paris, France, 1966.

    Google Scholar 

  57. H. von Zeipel, Recherche sur le movement des petites planètes, Ark. Astron. Mat. Fys., 1916, 11–13.

    Google Scholar 

  58. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York, 1961.

    Google Scholar 

  59. J. A. Morrison, Progress in Astronautics and Aeronautics 17, Methods in Astrodynamics and Celestial Mechanics, Ed. by R. L. Duncombe and V. G. Szebehely, Academic Press, N.Y., 1966, pp. 117–138.

    Google Scholar 

  60. H. Goldstein, Classical Mechanics, Addison Wesley, Reading, Massachusetts, 1950.

    Google Scholar 

  61. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Inter-science, New York, 1961.

    Google Scholar 

  62. J. Kevorkian, von Zeipel method and the two variable expansion procedure, The Astron. J. 71, 1966, pp. 878–885.

    Article  Google Scholar 

  63. A. A. Kamel, Perturbation method in the theory of nonlinear oscillations, Celestial Mechanics 3, 1970, pp. 90–106.

    Article  MathSciNet  MATH  Google Scholar 

  64. W. A. Mersman, Explicit recursive algorithms for the construction of equivalent canonical transformations, Celestial Mechanics 3, 1971, pp. 384–389.

    Article  MathSciNet  MATH  Google Scholar 

  65. C. S. Gardner, Adiabatic invariants of periodic classical systems, The Physical Review 115, 1959, pp. 791–794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kevorkian, J., Cole, J.D. (1981). Multiple-Variable Expansion Procedures. In: Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4213-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4213-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2812-2

  • Online ISBN: 978-1-4757-4213-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics