## Abstract

The probability *θ*(*p*), that the origin is in an infinite open cluster, is a non-decreasing function of *p*. This is intuitively obvious since an increase in the value of *p* leads generally to an increase in the number of open edges of L^{ d }, thereby increasing the number and length of open paths from the origin. Another way of putting this is to say that {|*C*| = ∞} is an increasing event, in the sense that if *ω* ∈ {|*C*| = ∞} then *ω*′ ∈ {|*C*| = ∞} whenever *ω* ≤ *ω*′. With such an example in mind we make the following definition. The event *A* in F is called *increasing* if *I* _{ A }
(*ω*) ≤ *I* _{ A }
(*ω*′) whenever *ω* ≤ *ω*′, where *I* _{ A } is the indicator function of *A*. We call *A decreasing* if its complement *A* ^{ c } is increasing.

## Keywords

Basic Technique Disjoint Path Reliability Theory Open Path Open Edge## Preview

Unable to display preview. Download preview PDF.

## Notes

- Harris, T. E. 1960 A lower bound for the critical probability in a certain percolation process,
*Proceedings of the Cambridge Philosophical Society*56, 13–20.MATHCrossRefGoogle Scholar - Barlow, R. N. and Proschan, F. 1965
*Mathematical Theory of Reliability*, Wiley, New York.MATHGoogle Scholar - Fortuin, C. M., Kasteleyn, P. W., and Ginibre, J. 1971 Correlation inequalities on some partially ordered sets,
*Communications in Mathematical Physics*22, 89–103.MathSciNetMATHCrossRefGoogle Scholar - Ahlswede, R. and Daykin, D. E. 1979 Inequalities for a pair of maps S x
*S → S*with S a finite set,*Mathe-matische Zeitschrift*165, 267–289.MathSciNetMATHCrossRefGoogle Scholar - Batty, C. J. K. and Bollman, H. W. 1980 Generalized Holley—Preston inequalities on measure spaces and their products,
*Zeitschrift fir Wahrscheinlichkeitstheorie und Verwandte Gebiete*53, 157–173.MATHCrossRefGoogle Scholar - Hollander, W. Th. F. den and Keane, M. 1986 Inequalities of FKG type,
*Physica*138A, 167–182.MathSciNetMATHCrossRefGoogle Scholar - Kesten, H. 1980b On the time constant and path length of first passage percolation,
*Advances in Applied Probability*12, 848–863.MathSciNetMATHCrossRefGoogle Scholar - Durrett, R. and Schonmann, R. H. 1988b The contact process on a finite set II,
*Annals of Probability*, to appear.Google Scholar - Berg, J. van den and Kesten, H. 1985 Inequalities with applications to percolation and reliability,
*Journal of Applied Probability*22, 556–569.MathSciNetMATHCrossRefGoogle Scholar - Berg, J. van den and Fiebig, U. 1987 On a combinatorial conjecture concerning disjoint occurrences of events,
*Annals of Probability*15, 354–374.MathSciNetMATHCrossRefGoogle Scholar - McDiarmid, C. J. H.
*1980 Clutter percolation and random graphs*Mathematical Programming Study*13, 17–25.*Google Scholar - McDiarmid, C. J. H.
*1981 General percolation and random graphs*Advances in Applied Probability*13, 40–60.*Google Scholar - McDiarmid, C. J. H. 1983 General first-passage percolation,
*Advances in Applied Probability*15, 149161.Google Scholar - Hammersley, J. M. 1961 Comparison of atom and bond percolation,
*Journal of Mathematical**Physics*2, 728–733.MathSciNetMATHGoogle Scholar - Campanino, M. and Russo, L. 1985 An upper bound for the critical probability for the three-dimensional cubic lattice,
*Annals of Probability*13, 478–491.MathSciNetMATHCrossRefGoogle Scholar - Russo, L. 1981 On the critical percolation probabilities,
*Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*56, 229–237.MATHCrossRefGoogle Scholar - Moore, E. F. and Shannon, C. E.
*1956 Reliable circuits using less reliable components*Journal of the Franklin Institute*262, 191–208 and 281–297.*Google Scholar - Chayes, J. T., Chayes, L., Fisher, D., and Spencer, T. 1986 Finite-size scaling and correlation lengths for disordered systems,
*Physical Review Letters*57, 2999–3002.MathSciNetCrossRefGoogle Scholar - Aizenman, M., Chayes, J. T., Chayes, L., Fröhlich, J., and Russo, L. 1983 On a sharp transition from area law to perimeter law in a system of random surfaces,
*Communications in Mathematical Physics*92, 19–69.MathSciNetMATHCrossRefGoogle Scholar - Chayes, J. T. and Chayes, L. 1986a Percolation and random media, in
*Critical Phenomena*,*Random Systems and Gauge Theories*, Les Houches, Session XLIII, 1984, eds. K. Osterwalder and R. Stora, 1001–1142, Elsevier, Amsterdam.Google Scholar - Chayes, J. T. and Chayes, L. 1986b Critical points and intermediate phases on wedges of V,
*Journal of Physics A: Mathematical and General*19, 3033–3048.MathSciNetMATHCrossRefGoogle Scholar