What Is Percolation?

  • Geoffrey Grimmett

Abstract

Suppose we immerse a large porous stone in a bucket of water. What is the probability that the centre of the stone is wetted? In formulating a simple stochastic model for such a situation, Broadbent and Hammersley (1957) gave birth to the ‘percolation model’. In two dimensions their model amounts to the following. Let ℤ2 be the plane square lattice and let p be a number satisfying 0 ≤ p ≤ 1. We examine each edge of ℤ2 in turn, and declare this edge to be open with probability p and closed otherwise, independently of all other edges. The edges of ℤ2 represent the inner passageways of the stone, and the parameter p is the proportion of passages which are broad enough to allow water to pass along them. We think of the stone as being modelled by a large, finite subsection of ℤ2 (see Figure 1.1), perhaps those vertices and edges of ℤ2 contained in some specified connected subgraph of ℤ2. On immersion of the stone in water, a vertex x inside the stone is wetted if and only if there is a path in ℤ2 from x to a vertex on the boundary of the stone, using open edges only. Percolation theory is concerned primarily with the existence of such ‘open paths’.

Keywords

Ising Model Critical Phenomenon Open Cluster Percolation Theory Percolation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Flory, P. J. 1941 Molecular size distribution in three dimensional gelation I—III, Journal of the American Chemical Society 63, 3083–3100.CrossRefGoogle Scholar
  2. Broadbent, S. R. 1954 In discussion of Symposium on Monte Carlo Methods, Journal of the Royal Statistical Society (B) 16, 68.Google Scholar
  3. Broadbent, S. R. and Hammersley, J. M. 1957 Percolation processes I. Crystals and mazes, Proceedings of the Cambridge Philosophical Society 53, 629–641.MathSciNetMATHCrossRefGoogle Scholar
  4. Cox, J. T. and Durrett, R. 1983 Oriented percolation in dimensions d > 4: bounds and asymptotic formulas, Mathematical Proceedings of the Cambridge Philosophical Society 93, 151–162.MathSciNetMATHCrossRefGoogle Scholar
  5. Fröhlich, J. and Spencer, T. 1982 The phase transition in the one-dimensional Ising model with 1/r2 inter- action energy, Communications in Mathematical Physics 84, 87–101.MathSciNetMATHCrossRefGoogle Scholar
  6. Grimmett, G. R. 1986 Percolation processes and dimensionality, in Stochastic Spatial Processes, ed. P. Tautu, 165–174, Lecture Notes in Mathematics no. 1212, Springer, Berlin.Google Scholar
  7. Stauffer, D. 1981 Scaling properties of percolation clusters, in Disordered Systems and Localization, eds. C. Castellani, C. DiCastro and L. Pettiti, 9–25, Springer, Berlin.CrossRefGoogle Scholar
  8. Kesten, H. 1986a Aspects of first-passage percolation, in Ecole d’Eté de Probabilités de Saint Flour XIV-1984, ed. P. L. Hennequin, 125–264, Lecture Notes in Mathematics no. 1180, Springer, Berlin.Google Scholar
  9. Grimmett, G. R. 1986 Percolation processes and dimensionality, in Stochastic Spatial Processes, ed. P. Tautu, 165–174, Lecture Notes in Mathematics no. 1212, Springer, Berlin.Google Scholar
  10. Grimmett, G. R. 1987a Long paths and cycles in a random lattice, in Random Graphs ‘85, Annals of Discrete Mathematics 33, 69–76, North-Holland, Amsterdam.Google Scholar
  11. Grimmett, G. R. 1987b Recent progress in percolation, Proceedings of the First World Congress of the Bernoulli Society, Tashkent 1986, eds. Yu. V. Prohorov and V. V. Sazonov, VNU Science Press, Utrecht.Google Scholar
  12. Kesten, H. 1987e Percolation theory and first-passage percolation, Annals of Probability 15, 1231–1271.MathSciNetMATHCrossRefGoogle Scholar
  13. Newman, C. M. 1987a Percolation theory: a selective survey of rigorous results, in Advances in Multiphase Flow and Related Problems, ed. G. Papanicolaou, 146–167, SIAM, Philadelphia.Google Scholar
  14. McDiarmid, C. J. H. 1980 Clutter percolation and random graphs Mathematical Programming Study 13, 17–25. Google Scholar
  15. Klein, S. T. and Shamir, E. 1982 An algorithmic method for studying percolation clusters, Stanford University Department of Computer Science Report no. STAN-CS-82–933.Google Scholar
  16. Kapitulnik, A., Aharony, A., Deutscher, G., and Stauffer, D. 1983 Self similarity and correlations in percolation, Journal of Physics A: Mathematical and General 16, L269 — L274.CrossRefGoogle Scholar
  17. Grimmett, G. R. and Kesten, H. 1984b Random electrical networks on complete graphs, Journal of the London Mathematical Society 30, 171–192.MathSciNetMATHGoogle Scholar
  18. Batty, C. J. K. and Bollman, H. W. 1980 Generalized Holley—Preston inequalities on measure spaces and their products, Zeitschrift fir Wahrscheinlichkeitstheorie und Verwandte Gebiete 53, 157–173.MATHCrossRefGoogle Scholar
  19. Beijeren, H. van 1982 Transport properties of stochastic Lorentz models, Reviews in Modern Physics 54, 195–234.CrossRefGoogle Scholar
  20. Durrett, R. and Schonmann, R. H. 1988b The contact process on a finite set II, Annals of Probability, to appear.Google Scholar
  21. Essam, J. W. 1972 Percolation and cluster size, in Phase Transitions and Critical Phenomena, volume II, eds. C. Domb and M. S. Green, 197–270, Academic Press, London.Google Scholar
  22. Essam, J. W. 1980 Percolation theory, Reports on Progress in Physics 43, 833–949.MathSciNetCrossRefGoogle Scholar
  23. Fortuin, C. M. 1972 On the random cluster model. II. The percolation model, Physica 58, 393–418.MathSciNetCrossRefGoogle Scholar
  24. Kesten, H. 1986a Aspects of first-passage percolation, in Ecole d’Eté de Probabilités de Saint Flour XIV-1984, ed. P. L. Hennequin, 125–264, Lecture Notes in Mathematics no. 1180, Springer, Berlin.Google Scholar
  25. Kesten, H. 1987e Percolation theory and first-passage percolation, Annals of Probability 15, 1231–1271.MathSciNetMATHCrossRefGoogle Scholar
  26. Kesten, H. and Zhang, Y. 1987 Strict inequalities for some critical exponents in 2D-percolation, Journal of Statistical Physics 46, 1031–1055.MathSciNetMATHCrossRefGoogle Scholar
  27. Hammersley, J. M. 1957b Percolation processes II. The connective constant, Proceedings of the Cambridge Philosophical Society 53, 642–645.MathSciNetMATHCrossRefGoogle Scholar
  28. Hammersley, J. M. 1957a Percolation processes. Lower bounds for the critical probability, Annals of Mathematical Statistics 28, 790–795.MathSciNetMATHCrossRefGoogle Scholar
  29. Ehrenfest, P. 1959 Collected Scientific Papers, ed. M. J. Klein, North-Holland, Amsterdam.Google Scholar
  30. Feller, W. 1968 An Introduction to Probability Theory, volume I, Wiley, New York. 1971 An Introduction to Probability Theory, volume II, Wiley, New York.Google Scholar
  31. Kesten, H. 1980a The critical probability of bond percolation on the square lattice equals Z, Communications in Mathematical Physics 74, 41–59.MathSciNetMATHCrossRefGoogle Scholar
  32. Harris, T. E. 1960 A lower bound for the critical probability in a certain percolation process, Proceedings of the Cambridge Philosophical Society 56, 13–20.MATHCrossRefGoogle Scholar
  33. Hankey, A. 1978 Three properties of the infinite cluster in percolation theory, Journal of Physics A: Mathematical and General 11, L49 — L55.MathSciNetCrossRefGoogle Scholar
  34. Grimmett, G. R. 1981 On the differentiability of the number of clusters per site in the percola- tion model, Journal of the London Mathematical Society 23, 372–384.MathSciNetMATHCrossRefGoogle Scholar
  35. Golden, K. and Papanicolaou, G. 1982 Bounds for effective parameters of heterogeneous media by analytic continuation, Communications in Mathematical Physics 90, 473–491.MathSciNetCrossRefGoogle Scholar
  36. Grimmett, G. R. 1987a Long paths and cycles in a random lattice, in Random Graphs ‘85, Annals of Discrete Mathematics 33, 69–76, North-Holland, Amsterdam.Google Scholar
  37. Kesten, H. 1988b Asymptotics in high dimensions for percolation, preprint.Google Scholar
  38. Gordon, D. M. 1988 Percolation in high dimensions, preprint.Google Scholar
  39. Kesten, H. 1988c Asymptotics in high dimensions for the Fortuin—Kasteleyn cluster model, preprint.Google Scholar
  40. Hammersley, J. M. 1959 Bornes supérieures de la probabilité critique dans un processus de filtra-tion, in Le Calcul des Probabilités et ses Applications, 17–37, CNRS, Paris.Google Scholar
  41. Harris, T. E. 1960 A lower bound for the critical probability in a certain percolation process, Proceedings of the Cambridge Philosophical Society 56, 13–20.MATHCrossRefGoogle Scholar
  42. Fisher, M. E. and Essam, J. W. 1961 Some cluster size and percolation problems, Journal of Mathematical Physics 2, 609–619.MathSciNetMATHCrossRefGoogle Scholar
  43. Hammersley, J. M. 1957b Percolation processes II. The connective constant, Proceedings of the Cambridge Philosophical Society 53, 642–645.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Geoffrey Grimmett
    • 1
  1. 1.School of MathematicsUniversity of BristolBristolEngland

Personalised recommendations