Single Photon Emission Computed Tomography

  • Mark W. Groch
  • William D. Erwin
  • John A. Bieszk


Since the introduction of single photon emission computed tomographic (SPECT; abbreviated SPET in Europe) techniques during the 1960s,123,124 SPECT has become a routine part of virtually every nuclear medicine department. With SPECT, by moving the gamma camera or cameras around the patient and viewing the object from at least 180°, a three-dimensional (3-D) data set can be reconstructed. When this data set is reconstructed by filtered back-projection methods, the SPECT slices are viewed in the transverse, oblique, sagittal, or coronal dimensions or can be formed, by state-of-the-art systems, into a 3-D representation of the organ surface (volume “rendered”). The significance of SPECT is that out-of-plane information is removed, not simply blurred as with earlier forms of tomography in nuclear medicine and radiology.107,108,112,145


Single Photon Emission Compute Tomography Gamma Camera Modulation Transfer Function Single Photon Emission Compute Tomography Imaging Single Photon Emission Compute Tomography Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Association of Physicists in Medicine (AAPM), Scintillation Camera Acceptance Testing and Performance Evaluation. New York: AAPM, 1980.Google Scholar
  2. 2.
    American College of Cardiology (ACC), American Heart Association (AHA), Society of Nuclear Medicine (SNM). Policy statement: standardization of cardiac tomographic imaging. J Nucl Med 1992;33:1434–1435.Google Scholar
  3. 3.
    A Guide to Revised Standards for Performance Measurements of Scintillation Cameras. National Electrical Manufacturers Association (NEMA), Washington D.C. 1986Google Scholar
  4. 4.
    Alavi A, Gosfield T, Cho W, et al. Unusual patterns of cerebellar hypometabolism in head trauma (HT) [abstract]. J Nucl Med 1990;31:741Google Scholar
  5. 5.
    Alavi A, Hirsch LJ. Studies of central nervous system disorder with single photon emission computed tomography and positron emission tomography: evolution over the past 2 decades. Semin Nucl Med 1991;21:58–81PubMedCrossRefGoogle Scholar
  6. 6.
    Alavi J, Alavi A, Dann R, et al. Metabolic brain imaging correlated with clinical features and brain tumors [abstract]. J Nucl Med 1985;18:P64Google Scholar
  7. 7.
    Anees A, Ali A, Erwin WD, Groch MW, Fordham EW Evaluation of lower back pain: improvement with SPECT imaging [abstract]. J Nucl Med 1987;28:564Google Scholar
  8. 8.
    Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computed tomography. J Nucl Med. 1984; 25:490–494PubMedGoogle Scholar
  9. 9.
    Bailey DL, Hutton BF, Walter PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–851PubMedGoogle Scholar
  10. 10.
    Beck JW, Jaszczak RJ, Coleman RE, et al. Analysis of SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods. IEEE Trans Nucl Sci 1982;NS-29:506–511CrossRefGoogle Scholar
  11. 11.
    Bellini S, Piacentini M, Cafforio C, et al. Compensation of tissue absorption in emission tomography. IEEE Trans Acoust Speech Sig Proc 1979;ASSP-27:213–218CrossRefGoogle Scholar
  12. 12.
    Berman DS, Kiat H, Van Train K, et al. Technetium 99m sestaMIBI in the assessment of chronic coronary artery disease. Semin Nucl Med 1991; 21:3190–3211Google Scholar
  13. 13.
    Berman KF. Cortical “stress tests” in schizophrenia: regional cerebral blood flow studies. Biol Psychiatry 1987;22:1304–1326PubMedCrossRefGoogle Scholar
  14. 14.
    Biersack HJ, Elger CE, Grunwald F, et al. Brain SPECT in epilepsy. Adv Funct Neuroimag 1988; 1:4–9Google Scholar
  15. 15.
    Bieszk JA. Performance changes of an Anger camera in magnetic fields up to 10G. J Nucl Med 1986;27:1902–1907PubMedGoogle Scholar
  16. 16.
    Bieszk JA, Hawman EG. Evaluation of SPECT angular sampling effects: continuous versus step-and-shoot acquisition. J Nucl Med 1987;28:1308–1314PubMedGoogle Scholar
  17. 17.
    Blum AS. Improving SPECT image quality by body contour following. In Esser PD (ed): Emission Computed Tomography: Current Trends. New York: Society of Nuclear Medicine, 1983:163–173Google Scholar
  18. 18.
    Bonte FJ, Devous MD, Stokely EM, et al. Single photon tomographic determination of regional cerebral blood flow in epilepsy. AJNR 1983;4:544–546PubMedGoogle Scholar
  19. 19.
    Borrello JA, Clinthorne NH, Rogers WL, et al. Oblique-angle tomography: a reconstructuring algorithm for transaxial tomography data. J Nucl Med 1981;22:471–473PubMedGoogle Scholar
  20. 20.
    Botvinick EH, Zhu YY, O’Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303–310PubMedGoogle Scholar
  21. 21.
    Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 1976;21: 689–732PubMedCrossRefGoogle Scholar
  22. 22.
    Brooks RA, Di Chiro G. Theory of image reconstruction in computed tomography. Radiology 1975;117:561–572PubMedGoogle Scholar
  23. 23.
    Brooks RA, Weiss GH, Talbert AJ. A new approach to interpolation in computed tomography. J Comput Assist Tomogr 1978;2:577–585PubMedCrossRefGoogle Scholar
  24. 24.
    Brown ML, Keyes JW, Leonard PF, et al. Facial bone scanning by emission tomography. J Nucl Med 1977;18:1184–1188PubMedGoogle Scholar
  25. 25.
    Budinger TF. Physical attributes of single-photon tomography. J Nucl Med 1980;21:579–592PubMedGoogle Scholar
  26. 26.
    Budinger TF, Derenzo SE, Greenberg WL, et al. Quantitative potentials of dynamic emission computed tomography. J Nucl Med 1978;19:309–315PubMedGoogle Scholar
  27. 27.
    Budinger TF, Derenzo SE, Gullberg GT, et al. Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comp Assist Tomogr 1977;1:131–145CrossRefGoogle Scholar
  28. 28.
    Budinger TF, Gullberg GT. Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci 1974;NS-21:2–20Google Scholar
  29. 29.
    Buell U, Dupont F, Uebis R, et al. 99mTc-methoxy-isobutyl-isonitrile SPECT to evaluate a perfusion index from regional myocardial uptake after exercise and at rest: results of a four hour protocol in patients with coronary heart disease and in control. Nucl Med Commun 1990; 11:77–94PubMedCrossRefGoogle Scholar
  30. 30.
    Burdine JA, Murphy PH, DePuey EG. Radionuclide computed tomography of the body using routine radiopharmaceuticals. II. Clinical applications. J Nucl Med 1979;20:108–114PubMedGoogle Scholar
  31. 31.
    Chandra R. Radioactivity—law, of decay, half-life and statistics. In: Introductory Physics of Nuclear Medicine. Philadelphia: Lea & Febiger, 1987:38–43Google Scholar
  32. 32.
    Chang L-T. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;NS-25:638–642CrossRefGoogle Scholar
  33. 33.
    Cheung WK, Lewitt RM. Modified Fourier reconstruction method using shifted transform samples. Phys Med Biol 1991;36:269–277PubMedCrossRefGoogle Scholar
  34. 34.
    Coleman RE, Jaszczak RJ, Cobb FR. Comparison of 180° and 360° data collection in thallium-201 imaging using single-photon emission computerized tomography (SPECT). J Nucl Med 1982; 23:655–660PubMedGoogle Scholar
  35. 35.
    Collier BD, Carrera GF, Johnson RP, et al. Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med 1985;26:979–987PubMedGoogle Scholar
  36. 36.
    Collier BD, Hellman RS, Krasnow AZ. Bone SPECT. Semin Nucl Med 1987;17:247–266PubMedCrossRefGoogle Scholar
  37. 37.
    Collier BD, Johnson RP, Carrera GF, et al. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography. Radiology 1985;154:207–211PubMedGoogle Scholar
  38. 38.
    Corbett JR, Jansen DE, Lewis SE, et al. Tomographic gated blood pool radionuclide ventriculography analysis of wall motion and left ventricular volumes in patients with coronary artery disease. J Am Coll Cardiol 1985;6:349–358PubMedCrossRefGoogle Scholar
  39. 39.
    Cox T, Curry J, Schutz-Ferino C, et al. An evaluation of SPECT acquisition modes for bone imaging [abstract]. J Nucl Med Technol 1993;21:116Google Scholar
  40. 40.
    Crawford CR, Kak AC. Aliasing artifacts in computerized tomography. Appl Opt 1979; 18:3704–3711PubMedCrossRefGoogle Scholar
  41. 41.
    Dann R, Hoford J, Kovacic S, et al. Evaluation of functional (PET) cerebral images. J Comput Assist Tomogr 1989;13:603–611PubMedCrossRefGoogle Scholar
  42. 42.
    DeNardo GL, Mahe MA, DeNardo SJ, et al. Body and blood clearance and marrow radiation dose contribution of 1–131 Lym-1 in patients with B cell malignancies. Nucl Med Commun 1993;14: 587–595PubMedCrossRefGoogle Scholar
  43. 43.
    DeVito RP, Hamill JJ, Treffen JD, et al. Energy weighted acquisition using finite spatial filters. J Nucl Med 1989;30:2029–2035PubMedGoogle Scholar
  44. 44.
    Devous MD, Raese JD, Herman JH, et al. SPECT determination of regional cerebral blood flow in schizophrenic patients at rest and during mental task [abstract]. J Nucl Med 1986;27:734Google Scholar
  45. 45.
    Eisner R, Noever T, Nowak D, et al. Use of cross correlation function to detect patient motion during SPECT imaging. J Nucl Med 1987;30:441–449Google Scholar
  46. 46.
    Eisner RL, Nowak DJ, Pettigrew R, et al. Fundamentals of 180° acquisition and reconstruction in SPECT imaging. J Nucl Med 1986;27: 1717–1728PubMedGoogle Scholar
  47. 47.
    English JR, Brown SE. SPECT: Single Photon Emission Computed Tomography: a Primer. New York: Society of Nuclear Medicine, 1986Google Scholar
  48. 48.
    Erwin WD, Groch MW, DeNardo SJ, GL DeNardo. Enhanced quantitative MoAB radioimmunotherapy imaging with MIRDOSE dosimetry software [abstract]. J Nucl Med 1993;34:128PGoogle Scholar
  49. 49.
    Erwin WD, Groch MW, Macey DJ, et al. Combined quantitative MoAB radioimmunotherapy imaging and MIRDOSE dosimetry software protocol [abstract]. In Proceedings of the 4th Annual Symposium: Current and Future Directions of Immunoconjugates, 1992:99Google Scholar
  50. 50.
    Faber TL, Stokely EM, Templeton GH, et al. Quantification of three-dimensional left ventricular segmental wall motion and volumes from gated tomographic radionuclide ventriculograms. J Nucl Med 1989;30:638–649PubMedGoogle Scholar
  51. 51.
    Fischman AJ, Moore RH, Gill JB, Strauss HW Gated blood pool tomography: a technology whose time has come. SeminNuclMed 1989;19(1):13–21Google Scholar
  52. 52.
    Fleming JS. A technique for motion correction in dynamic scintigraphy. Eur J Nucl Med 1984; 9:397–407PubMedCrossRefGoogle Scholar
  53. 53.
    Floyd CE Jr, Jaszczak RJ, Coleman RE. Convergence of the maximum likelihood reconstruction algorithm for emission computed tomography. Phys Med Biol 1987;32:463–476PubMedCrossRefGoogle Scholar
  54. 54.
    Floyd CE Jr, Jaszczak RJ, Harris CC, et al. Energy and spatial distribution of multiple order Compton scattering in SPECT: A Monte Carlo investigation. Phys Med Biol 1984;29:1217–1230PubMedCrossRefGoogle Scholar
  55. 55.
    Gagnon D, Todd-Pokropek A, Arsenault A, et al. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imag 1989;MI-8:245–250CrossRefGoogle Scholar
  56. 56.
    Garcia EV, Van Train K, Maddahi J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med 1985;26:17–26PubMedGoogle Scholar
  57. 57.
    Garty I, Delbeke D, Sandler MP. Correlative pediatric imaging. J Nucl Med 1989;30:15–24PubMedGoogle Scholar
  58. 58.
    Gates G. SPECT imaging of the lumbosacral spine and pelvis [abstract]. Clin Nucl Med 1986; 11:12CrossRefGoogle Scholar
  59. 59.
    Gilardi MC, Bettinardi V, Todd-Pokropek A, et al. Assessment and comparison of three scatter correction techniques in single-photon emission computed tomography. J Nucl Med 1988;29:1971–1979PubMedGoogle Scholar
  60. 60.
    Gill JB, Moore RH, Tamaki N, et al. Multigated blood-pool tomography: new method for the assessment of left ventricular function. J Nucl Med 1986;27:1916–1924PubMedGoogle Scholar
  61. 61.
    Gilland DR, Tsui BMW, Berg J, et al. Determination of optimum filter function for SPECT imaging [abstract]. J Nucl Med 1986;27:1002–1003Google Scholar
  62. 62.
    Go RT, MacIntyre WJ, Houser TS, et al. Clinical evaluation of 180° and 360° data sampling techniques for transaxial SPECT thallium-201 myocardial perfusion imaging. J Nucl Med 1985; 26:695–706PubMedGoogle Scholar
  63. 63.
    Gottschalk SC, Salem D. Effect of an elliptical orbit on SPECT resolution and image uniformity. In Proceedings of 3rd World Congress of Nuclear Medicine and Biology. Oxford: Pergamon Press, 1982:1026–1029Google Scholar
  64. 64.
    Gottschalk SC, Salem D, Lim CB, et al. SPECT resolution and uniformity improvements by noncircu-lar orbit. J Nucl Med 1983;24:822–828PubMedGoogle Scholar
  65. 65.
    Graham LS. A rational quality assurance program for SPECT instrumentation. In Freeman LM (ed): Nuclear Medicine Annual 1989. New York: Raven Press, 1989:81–108Google Scholar
  66. 66.
    Graham LS, Perez-Mendez V. Special imaging devices. In Rollo FD (ed): Nuclear Medicine Physics, Instrumentation, and Agents. St. Louis: Mosby, 1977:271–321Google Scholar
  67. 67.
    Graham MM, Links JM, Lewellen TK, et al. Considerations in the purchase of a nuclear medicine computer system. J Nucl Med 1988;29:717–724PubMedGoogle Scholar
  68. 68.
    Greer KL, Coleman RE, Jaszczak RJ. SPECT: a practical guide for users. J Nucl. Med Technol 1983;11:61–65Google Scholar
  69. 69.
    Greer KL, Jaszczak RJ, Coleman RE. An overview of a camera-based SPECT system. Med Phys. 1982,9:455–463PubMedCrossRefGoogle Scholar
  70. 70.
    Groch MW, Ali A, Erwin WD, Fordham EF. Focal plane dual head longitudinal tomography. In Ahlwuwalia BD (ed): Tomographic Methods in Nuclear Medicine: Physical Principles, Instruments and Clinical Applications. Boca Raton, FL: CRC Press, 1989:123–150Google Scholar
  71. 71.
    Groch MW, Erwin WD, Marshall RC, Leidholdt EM. Optimized gated blood pool SPECT imaging protocol [abstract]. Clin Nucl Med 1992;17:524Google Scholar
  72. 72.
    Groch MW, Erwin WD, Turner DA, Domnanovich JR. Dual-isotope motion correction technique for gated exercise scintigraphy. J Nucl Med 1985; 26:1478–1484PubMedGoogle Scholar
  73. 73.
    Groch MW, Liedholdt EM, Marshall RA, Schippers DJ, Erwin WD. Gated blood pool SPECT imaging: sources of artifacts [abstract]. Clin Nucl Med 1991;16:717CrossRefGoogle Scholar
  74. 74.
    Groch MW, Marshall RC, Erwin WD, Schippers DJ. Enhanced sensitivity for noninvasive assessment of coronary artery disease with quantitative gated blood pool SPECT imaging [abstract]. Clin Nucl Med 1992;17:524Google Scholar
  75. 75.
    Groch MW, Marshall RC, Erwin WD, Schippers DJ. Quantitative gated blood pool SPECT imaging: enhanced sensitivity for noninvasive assessment of coronary artery disease [abstract]. J Nucl Med 1993;34:35PGoogle Scholar
  76. 76.
    Gullberg GT. An analytical approach to quantify uniformity artifacts for circular and noncircular detector motion in single photon emission computed tomography imaging. Med Phys 1987;14: 105–114PubMedCrossRefGoogle Scholar
  77. 77.
    Gullberg GT, Zeng GL. A cone-beam filtered back-projection reconstruction algorithm for cardiac single photon emission computed tomography. IEEE Trans Med Imag 1992;11:91–101CrossRefGoogle Scholar
  78. 78.
    Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Cone-beam tomography of the heart using SPECT. Invest Radiol 1991;26:681–688PubMedCrossRefGoogle Scholar
  79. 79.
    Gullberg GT, Zeng GL, Christian PE, Tsui BMW, Morgan HT. Single-photon emission computed tomography of the heart using cone-beam geometry and non-circular detector rotation. In Proceedings, Xlth International Conference on Information Processing in Medical Imaging, 1991:123–138.Google Scholar
  80. 80.
    Gullberg GT, Zeng GL, Datz FL, et al. Review of convergent beam tomography in single photon emission computed tomography. Phys Med Biol 1992;37:507–534PubMedCrossRefGoogle Scholar
  81. 81.
    Haerten RL, Hernandez T. Single photon emission computed tomography (SPECT): principles, technical implementation, and clinical application. Electromedica 1984;52:66–80Google Scholar
  82. 82.
    Halama JR, Henkin RE. Quality assurance in SPECT imaging. Appl Radiol 1987;May:41–50Google Scholar
  83. 83.
    Halama JR, Madsen MT. Is your gamma camera-SPECT system installed and operating optimally? Appl Radiol 1992;June:35–41Google Scholar
  84. 84.
    Hamill JJ, Hawman EG. A fast reconstruction method for two- and three-dimensional SPECT [abstract]. J Nucl Med 1993;34:192PGoogle Scholar
  85. 85.
    Han KS, Song HB. Oblique angle display of ECT images. In Esser PD (ed): Emission Computed Tomography: Current Trends. New York: Society of Nuclear Medicine, 1983:177–191Google Scholar
  86. 86.
    Harkness BA, Rodgers WL, Clinthorne NH, Keyes JW Jr. SPECT: quality control procedures and artifact identification. J Nucl Med Technol 1983; 11:55–60Google Scholar
  87. 87.
    Harris CC, Greer KL, Jaszczak RJ, et al. 99mTc attenuation coefficients in water-filled phantoms determined with gamma cameras. Med Phys 1984; 11:681–685PubMedCrossRefGoogle Scholar
  88. 88.
    Hawkins WG, Esser PD. An introduction to the application of Fourier transform analysis in nuclear medicine. In Esser PD, Johnston RE (eds): Technology of Nuclear Magnetic Resonance. New York: Society of Nuclear Medicine, 1984:37–61.Google Scholar
  89. 89.
    Hawman PC, Haines EJ. The cardiofocal collimator: a variable-focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439–450PubMedCrossRefGoogle Scholar
  90. 90.
    Hawman PC, Hsieh J, Hasselquist BE. The cardiofocal collimator: a novel focussing collimator for cardiac SPECT [abstract]. J Nucl Med 1992;33:852Google Scholar
  91. 91.
    Heller SL, Goodwin PN. SPECT instrumentation: performance, lesion detection, and recent innovations. SeminNuclMed 1987;17:184–199Google Scholar
  92. 92.
    Herman GT. Image reconstruction from projections: implementation and applications. Top Appl Phys 32:1979Google Scholar
  93. 93.
    Herman GT. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Orlando, FL: Academic Press, 1980Google Scholar
  94. 94.
    Herman GT, Hurwitz H Jr, Lent A. A Bayesian analysis of image reconstruction. In Ter-Pogossian MM, Phelps ME, Brownell GL, et al. (eds): Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. Baltimore: University Park Press, 1977:85–103Google Scholar
  95. 95.
    Hill TC, Magistretti PL, Holman BL, et al. Assessment of regional cerebral blood flow (rCBF) in stroke using SPECT and 1–123 IMP. Stroke 1984;15:40–45PubMedCrossRefGoogle Scholar
  96. 96.
    Holman BL, Carvalho PA, Zimmerman RE, et al. Brain perfusion SPECT using an annular single crystal camera: initial clinical experience. J Nucl Med 1990;31:1456–1461PubMedGoogle Scholar
  97. 97.
    Jarritt PH, Ell PJ, Myers M J, et al. A new transverse-section brain imager for single gamma emitters. J Nucl Med 1979;20:319–327PubMedGoogle Scholar
  98. 98.
    Jaszczak RJ, Chang L-T, Murphy PH. Single photon emission computed tomography using multi-slice fan beam collimator. IEEE Trans Nucl Sci 1979;NS-26(1):610–618CrossRefGoogle Scholar
  99. 99.
    Jaszczak RJ, Chang L-T, Stein NA, Moore FE. Whole-body single photon emission computed tomography using large field of view scintillation cameras. Phys Med Biol 1979;24:1123–1143PubMedCrossRefGoogle Scholar
  100. 100.
    Jaszczak RJ, Coleman RE. Instrumentation for single photon emission of computed tomographic studies of the brain. Am J Physiol Imag 1988;3:67–70Google Scholar
  101. 101.
    Jaszczak RJ, Coleman RE, Lim CB. SPECT: single photon emission computed tomography. IEEE Trans Nucl Sci 1980;(NS-27):1137–1153CrossRefGoogle Scholar
  102. 102.
    Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT). IEEE Trans Nucl Sci 1981;(NS-28):69–80Google Scholar
  103. 103.
    Jaszczak RJ, Floyd CE Jr, Harris CC, Coleman RE. Cone beam collimation for SPECT: improved data acquisition geometry [abstract]. Radiology 1985; 157(P):61Google Scholar
  104. 104.
    Jaszczak RJ, Floyd CE Jr, Manglos SH, Greer KL, Coleman RE. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT): engineering of computerized multidimensional imaging and processing (1986). SPIE 1986;67:193–199CrossRefGoogle Scholar
  105. 105.
    Jaszczak RJ, Greer KL, Coleman RE. SPECT system misalignment: comparison of phantom and patient images. In Esser PD (ed): Emission Computed Tomography: Current Trends. 1983 New York: Society of Nuclear Medicine, 1983:57–70Google Scholar
  106. 106.
    Jaszczak RJ, Greer KL, Floyd CE Jr, et al. Improved SPECT quantification using compensation of scattered photons. J Nucl Med 1984;25:893–900PubMedGoogle Scholar
  107. 107.
    Jaszczak RJ, Huard D, Murphy PH, et al. Radionuclide emission computed tomography with a scintillation camera [abstract]. J Nucl Med 1976;17:551Google Scholar
  108. 108.
    Jaszczak RJ, Murphy PH, Huard D, et al. Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med 1977;18:373–380PubMedGoogle Scholar
  109. 109.
    Jaszczak RJ, Whitehead FR, Lim CB, Coleman RE. Lesion detection with single-photon emission computed tomography (SPECT) compared with conventional imaging. J Nucl Med 1982;23:97–102PubMedGoogle Scholar
  110. 110.
    Johns HE, Cunningham JR. Nuclear medicine. In: The Physics of Radiology. Springfield, IL: Charles C Thomas, 1983:507–510.Google Scholar
  111. 111.
    Kay DB, Keyes JW Jr. First order corrections for absorption and resolution compensation in radionuclide Fourier tomography [abstract]. J Nucl Med 1977;16:540–541Google Scholar
  112. 112.
    Kay DB, Keyes JW Jr, Simon W Radionuclide tomographic image reconstruction using Fourier transform techniques. J Nucl Med 1974;15: 981–986PubMedGoogle Scholar
  113. 113.
    Kiat H, Maddahi J, Roy LT, et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989;117:1–11PubMedCrossRefGoogle Scholar
  114. 114.
    Kimura K, Hashikawa K, Etani H, et al. A new apparatus for brain imaging: four head rotating gamma camera single photon emission computed tomograph. J Nucl Med 1990;31:603–609PubMedGoogle Scholar
  115. 115.
    King M. Computer and hardware requirements for single photon emission computed tomography (SPECT). In Ahluwalia BD (ed): Tomographic Methods in Nuclear Medicine: Physical Principles, Instruments, and Clinical Applications. Boca Raton, FL: CRC Press, 1989:35–42.Google Scholar
  116. 116.
    King MA, Doherty PW, Schwinger RB. Fast count-dependent digital filtering of nuclear medicine images. J Nucl Med 1983;24:1039–1045PubMedGoogle Scholar
  117. 117.
    King MA, Glick SJ, Penney BC, et al. Interactive visual optimization of SPECT prereconstruction filtering. J Nucl Med 1987;28:1192–1198PubMedGoogle Scholar
  118. 118.
    King MA, Schwinger RB, Doherty PW, et al. Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 1984; 25:1234–1240PubMedGoogle Scholar
  119. 119.
    King MA, Schwinger RB, Penney BC, et al. Digital restoration of indium-111 and iodine-123 SPECT images with optimized Metz filters. J Nucl Med 1986;27:1327–1336PubMedGoogle Scholar
  120. 120.
    Koppel GA. Recent advances with monoclonal antibody drug targeting for the treatment of human cancer. Bioconj Chem 1990;1:13–23CrossRefGoogle Scholar
  121. 121.
    Koral KF, Wang X, Rogers WL, et al. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988;9:195–202Google Scholar
  122. 122.
    Kramer EL, Noz ME, Sanger JJ, et al. CT-SPECT fusion to correlate radiolabeled monoclonal antibody uptake with abdominal CT findings. Radiology 1989;172:861–865PubMedGoogle Scholar
  123. 123.
    Kuhl DE, Edwards RQ. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 1964;83:926–935PubMedGoogle Scholar
  124. 124.
    Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963;80:653–662Google Scholar
  125. 125.
    Kuhl DE, Edwards RQ, Ricci AR, et al. The Mark IV system for radionuclide computed tomography of the brain. Radiology 1976; 121:405–413PubMedGoogle Scholar
  126. 126.
    Kuni CC. Introduction to Computers and Digital Processing in Medical Imaging. Chicago: Year Book, 1988Google Scholar
  127. 127.
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–316PubMedGoogle Scholar
  128. 128.
    Larsson S, Israelsson A. Considerations on system design, implementation and computer processing in SPECT. IEEE Trans Nucl Sci 1982;NS-29: 1331–1342CrossRefGoogle Scholar
  129. 129.
    Lee BI, Markand ON, Wellman HN, et al. HIPDM-SPECT in patients with medically intractable complex partial seizures: ictal study. Arch Neurol 1988;234:377–384Google Scholar
  130. 130.
    Lewitt RM, Bates RHT. Image reconstruction from projections. IV. Projection completion methods (computational examples). Optik 1978;50:269–278Google Scholar
  131. 131.
    Lim CB, Chang L-T, Jaszczak RJ. Performance analysis of three camera configurations for single photon emission computed tomography. IEEE Trans Nucl Sci 1980;NS-27:559–568CrossRefGoogle Scholar
  132. 132.
    Lim CB, Han KS, Hawman EG, et al. Image noise, resolution, and lesion detectability in single photon emission CT. IEEE Trans Nucl Sci 1982; NS-29:500–505CrossRefGoogle Scholar
  133. 133.
    Lim CB, Walker R, Pinkstaff, A et al. Triangular SPECT system for 3-D total organ volume imaging: performance results and dynamic imaging capability. IEEE Trans Nucl Sci 1986;NS-33:501–504CrossRefGoogle Scholar
  134. 134.
    Links JM. Multidetector single photon emission tomography: are two (or three or four) heads really better than one? Eur J Nucl Med 1993;20:441–447CrossRefGoogle Scholar
  135. 135.
    Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500PubMedGoogle Scholar
  136. 136.
    Llacer J, Veklerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imag 1989;8:186–193CrossRefGoogle Scholar
  137. 137.
    Loats H. CT and SPECT image registration and fusion for spatial localization of metastatic processes using radiolabeled monoclonals. J Nucl Med 1993;34:562–566PubMedGoogle Scholar
  138. 138.
    Logan KW, Holmes RA. Missouri University Multiplane Imager (MUMPI): a high sensitivity rapid dynamic ECT brain imager [abstract]. J Nucl Med 1984;25:P105Google Scholar
  139. 139.
    Lowry CA, Cooper MJ. The problem of Compton scattering in emission tomography: a measurement of its spatial distribution. Phys Med Biol 1987; 32:1187–1191PubMedCrossRefGoogle Scholar
  140. 140.
    Madsen MT, Park CH. Enhancement of SPECT images by Fourier filtering the projection set. J Nucl Med 1985;26:395–402PubMedGoogle Scholar
  141. 141.
    Malko JA, Van Heertum RL, Gullberg GT, et al. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 1986;27:701–705PubMedGoogle Scholar
  142. 142.
    Muster TD, Aarsvold JN, Barrett HH, et al. A full-field modular gamma camera. J Nucl Med 1990; 31:632–639Google Scholar
  143. 143.
    Moore SC, Doherty MD, Zimmerman RE, Holman BL. Improved performance from modifications to the multidetector SPECT brain scanner. J Nucl Med 1984;25:688–691PubMedGoogle Scholar
  144. 144.
    Muehllehner G. Rotating collimator tomography [abstract]. J Nucl Med 1970; 11:347Google Scholar
  145. 145.
    Muehllehner G, Wetzel RA. Section imaging by computer calculation. J Nucl Med 1971;12:76–84PubMedGoogle Scholar
  146. 146.
    Murphy PH. Acceptance testing and quality control of gamma cameras, including SPECT. J Nucl Med 1987;28:1221–1227PubMedGoogle Scholar
  147. 147.
    Oppenheim BE, Appledorn CR. Uniformity correction for SPECT using a mapped cobalt-57 sheet source. J Nucl Med 1985;26:409–415PubMedGoogle Scholar
  148. 148.
    Order SE. Monoclonal antibodies: potential role in radiation therapy oncology. Int J Radiat Oncol Biol Phys 1981;8:1193–1201CrossRefGoogle Scholar
  149. 149.
    Ott RJ, Flower MA, Babich JW, Marsden PK. The physics of radioisotope imaging. In Webbs (ed): The Physics of Medical Imaging. Bristol: Adam Hilger, 1988:142–318Google Scholar
  150. 150.
    Pang SC, Genna S. The effect of Compton scattered photons on emission computerized transaxial tomography. IEEE Trans Nucl Sci 1979;NS-26: 2772–2774CrossRefGoogle Scholar
  151. 151.
    Pappata S, Tran Dinh S, Baron JC, et al. Remote metabolic effects of cerebrovascular lesions: magnetic resonance and positron tomography imaging. Neuroradiology 1987;29:1–8PubMedCrossRefGoogle Scholar
  152. 152.
    Parker JA. Image Reconstruction in Radiology. Boca Raton, FL: CRC Press, 1990Google Scholar
  153. 153.
    Pelizzari CA, Chen GTY, Spelbring DR, et al. Accurate three dimensional registration of CT, PET, and/or MRI images of the brain. J Comput Assist Tomogr 1989;13:20–26PubMedCrossRefGoogle Scholar
  154. 154.
    Phelps ME. Emission computed tomography. Semin Nucl Med 1977;7:337–365PubMedCrossRefGoogle Scholar
  155. 155.
    Rodgers WL, Clinthorne NH, Harkness BA, et al. Field-flood requirements for emission computed tomography with an Anger camera. J Nucl Med 1982;23:162–168Google Scholar
  156. 156.
    Rodgers WL, Clinthorne NH, Stamos J, et al. Performance evaluation of SPRINT: a single photon ring tomograph for brain imaging. J Nucl Med 1984;25:1013–1018Google Scholar
  157. 157.
    Rollo FD. Quality assurance in nuclear medicine. In Rollo FD (Ed.): Nuclear Medicine Physics, Instrumentation, and Agents. St. Louis: Mosby, 1977:322–360Google Scholar
  158. 158.
    Rollo FD. SPECT, PET, MRI: contrast and correlation. Diagn Imag 1984;June:59–65Google Scholar
  159. 159.
    Rose A. Vision: Human and Electronic. New York: Plenum Press, 1973Google Scholar
  160. 160.
    Rosenfeld A, Kak AC. Reconstruction. In Digital Picture Processing (2nd ed). Orlando, FL: Academic Press 1982:353–430Google Scholar
  161. 161.
    Rowe CC, Berkovic SF, Sia STB, et al. Localization of epileptic foci with postictal single photon emission computed tomography. Ann Neurol 1989; 26:660–668PubMedCrossRefGoogle Scholar
  162. 162.
    Ryding E, Rosen I, Elmqvist D, et al. SPECT measurements with 99mTc HMPAO in focal epilepsy. J Cereb Blood Flow Metab 1988;8:S95PubMedCrossRefGoogle Scholar
  163. 163.
    Serafini AN. From monoclonal antibodies to peptides and molecular recognition units: an overview. J Nucl Med 1993;34:533–536PubMedGoogle Scholar
  164. 164.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982;MI-1:113–122CrossRefGoogle Scholar
  165. 165.
    Smith BD. Cone-beam tomography: recent advances and a tutorial review. Opt Eng 1990;29: 524–534CrossRefGoogle Scholar
  166. 166.
    Snyder DL, Cox JR Jr. An overview of reconstructive tomography and limitations imposed by a finite number of projections. In Ter-Pogossian MM, et al. (eds): Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine. Baltimore: University Park Press, 1977:3–32Google Scholar
  167. 167.
    Sorenson JA, Phelps ME. Image quality in nuclear medicine. In Physics in Nuclear Medicine. Philadelphia: Saunders, 1987:362–390Google Scholar
  168. 168.
    Sorenson JA, Phelps ME. Nuclear counting statistics. In Physics in Nuclear Medicine. Philadelphia: Saunders, 1987:115–142Google Scholar
  169. 169.
    Soussaline FP, Cao A, LeCoq G, et al. An analytical approach to the single photon emission computed tomography with attenuation effect. Eur J Nucl Med 1982;7:487–493PubMedCrossRefGoogle Scholar
  170. 170.
    Stanley WD, Dougherty GR, Dougherty R. Digital Signal Processing. Reston, VA: Reston Publishing, 1984Google Scholar
  171. 171.
    Stark H, Woods JW, Paul I, Hingorani R. Direct Fourier reconstruction in computer tomography. IEEE Trans ASSP 1981 ;ASSP-29:237–245CrossRefGoogle Scholar
  172. 172.
    Stearns CW, Chesler DA, Brownell GL. Three-dimensional image reconstruction in the Fourier domain. IEEE Trans Nucl Sci 1987;NS-34: 374–378CrossRefGoogle Scholar
  173. 173.
    Stefan H, Pawlik G, Bocher-Scharz HG, et al. Functional and morphologic abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 1987;234:377–384PubMedCrossRefGoogle Scholar
  174. 174.
    Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computed assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr 1980;4:230–240PubMedCrossRefGoogle Scholar
  175. 175.
    Tamaki N, Mukai T, Ishii Y, et al. Comparative study of thallium emission myocardial tomography with 180° and 360° data collection. J Nucl Med 1982; 23:661–666PubMedGoogle Scholar
  176. 176.
    Tanaka E, Iinuma TA. Correction functions for optimizing the reconstructed image in transverse section scan. Phys Med Biol 1975;20:789–798PubMedCrossRefGoogle Scholar
  177. 177.
    Todd-Pokropek A. Quality control, detection and display. In Kuhl TK (ed): Principles of Radionuclide Emission Imaging. Oxford: Pergamon Press, 1983Google Scholar
  178. 178.
    Todd-Pokropek A. The mathematics and physics of emission computerized tomography (ECT). In Esser PD (ed): Emission Computed Tomography: Current Trends. New York: Society of Nuclear Medicine, 1983:3–31Google Scholar
  179. 179.
    Todd-Pokropek A. Theory of tomographic reconstruction. In Ahlwualia BD (ed): Tomographic Methods in Nuclear Medicine: Physical Principles, Instruments, and Clinical Applications. Boca Raton, FL: CRC Press, 1989:3–33Google Scholar
  180. 180.
    Tretiak OJ, Metz CE. The exponential radon transform. SIAM JAppl Math 1980;39:341–354CrossRefGoogle Scholar
  181. 181.
    Treves S, Collins-Nakai RL. Radioactive tracers in congenital heart disease. J Am Coll Cardiol 1976; 38:711–721CrossRefGoogle Scholar
  182. 182.
    Tsui BMW, Gullberg GT, Edgerton ER, et al. Correction of non-uniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507PubMedGoogle Scholar
  183. 183.
    Tsui BMW, Gullberg GT, Edgerton ER, et al. Design and clinical utility of a fan beam collimator for SPECT imaging of the head. J Nucl Med 1986;27:810–819PubMedGoogle Scholar
  184. 184.
    Tung C, Gullberg GT, Tsui BMW, Perry JR. Reconstruction of truncated fan-beam data of the heart [abstract]. J Nucl Med 1989;30:755Google Scholar
  185. 185.
    Tung C-H, Gullberg GT, Zeng GL, et al. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;NS-39:1134–1143CrossRefGoogle Scholar
  186. 186.
    Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med Imag 1987;MI-6:313–319CrossRefGoogle Scholar
  187. 187.
    Vogel RA, Kirch DL, LeFree MT, Steele PP. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 1978;19:648–654PubMedGoogle Scholar
  188. 188.
    Vogl G, Schwer C, Jauch M, et al. A simple superposition method for anatomical adjustments of CT and SPECT images. J Comput Assist Tomogr 1989; 13:929–931PubMedCrossRefGoogle Scholar
  189. 189.
    Webb S. In the beginning. In Webb (ed.): The Physics of Medical Imaging. Bristol: Adam Hilger, 1988CrossRefGoogle Scholar
  190. 190.
    Whitehead FR. Minimum detectable gray-scale differences in nuclear medicine images. J Nucl Med 1978;19:87–93PubMedGoogle Scholar
  191. 191.
    Williams DL, Ritchie JL, Harp GD, et al. Preliminary characterization of the properties of a transaxial whole body single photon tomograph: emphasis on future application to cardiac imaging. In Esser PD (ed): Functional Mapping of Organ Systems and Other Computer Topics. New York: Society of Nuclear Medicine, 1981:149–166Google Scholar
  192. 192.
    Williams KA, Tailon LA, Draho JM. LV ejection fraction derived from gated tomography using Tc-99m-sestaMIBI myocardial perfusion image inversion: a comparison with first-pass radionuclide angiography. J Am Coll Cardiol 1993;21:250AGoogle Scholar
  193. 193.
    Zeng GL, Gullberg GT. A short-scan cone-beam algorithm for circular and noncircular detector orbits. Proc SPIE 1900; 1233:453–463CrossRefGoogle Scholar
  194. 194.
    Zeng GL, Tung CH, Gullberg GT. New approaches to reconstructing truncated projections in cardiac fan-beam and cone-beam tomography [abstract]. J Nucl Med 1990;31:867Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark W. Groch
  • William D. Erwin
  • John A. Bieszk

There are no affiliations available

Personalised recommendations