Vesicoureteric Reflux and Radionuclide Cystography

  • S. T. Treves
  • M. Gelfand
  • U. V. Willi


Vesicoureteric reflux (VUR) is caused by failure of the ureterovesical valve mechanism. This failure may be due to a congenital variation, pathologic process, infection, or immaturity that distorts the anatomy or function (or both) of the ureterovesical junction. Passive and active factors characterize the normal valve mechanism of the ureterovesical junction. Passive factors include the oblique entry of the ureter into the bladder; the length of the intramural ureter, particularly of its submucosal segment; and the ratio of the length of the submucosal tunnel to the diameter of the ureter. The active factors include contraction of the ureterotrigonal muscles, which close the ureteral meatus and the submucosal tunnel, and active ureteral peristalsis, as seen during diuresis.33 The intravesical ureter becomes longer with age, often producing sufficient length to convert a refluxing ureterovesical junction into a nonre-fluxing one.


Renal Pelvis Vesicoureteric Reflux Bladder Capacity Bladder Volume Intravesical Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey RR. Sterile reflux: is it harmless? In Hodson J, Kinkaid SP (eds): Reflux Nephropathy. New York: Masson, 1979Google Scholar
  2. 2.
    Berger RM, Maizels M, Moren GC, Conway J, Firlit CF. Bladder capacity (ounces) equals age (years) plus 2 predicts normal bladder capacity and aids in diagnosis of abnormal voiding patterns. J Urol 1983;129:347–349PubMedGoogle Scholar
  3. 3.
    Bower G, Lovegrove FT, Geijsel H. Comparison of direct and indirect radionuclide cystography. J Nucl Med 1985;26:465–468PubMedGoogle Scholar
  4. 4.
    Buonomo C, Treves ST, Jones B, et al. Silent renal damage in symptom-free siblings of children with vesicoureteral reflux: assessment with technetium-99m dimercaptosuccinic acid scintigraphy. J Pediatr 1993;122:721–727CrossRefPubMedGoogle Scholar
  5. 5.
    Conway JJ, Belman AB, King LR. Direct and indirect radionuclide cystography. Semin Nucl Med 1974; 4:197–211CrossRefPubMedGoogle Scholar
  6. 6.
    Conway JJ, Kruglick GD. Effectiveness of direct and indirect radionuclide cystography in detecting vesicoureteral reflux. J Nucl Med 1976;17:81–83PubMedGoogle Scholar
  7. 7.
    Cremin BJ. Observations on vesico-ureteric reflux and intrarenal reflux: a review and survey of material. Clin Radiol 1979;30:607–621CrossRefPubMedGoogle Scholar
  8. 8.
    Dilman LD, Van der Lage FC. Radionuclide decay schemes and nuclear parameters for use in radiation dose estimation. In: MIRD Pamphlet No. 10. New York: Society of Nuclear Medicine, 1975Google Scholar
  9. 9.
    Fairhurst JJ, Rubin CME, Hyde I, Freeman NV, Williams JD. Bladder capacity in infants. J Pediatr Surg 1991;26:55–57CrossRefPubMedGoogle Scholar
  10. 10.
    Faure C. Le reflux vesico-ureteral. In Lefebvre J (ed): Traite de Radiodiagnostic. Paris: Masson & Cie, 1973Google Scholar
  11. 11.
    Fendel H. Radiation exposure due to urinary tract disease. In Kaufmann HJ (ed): Progress in Pediatric Radiology. Basel: Karger, 1970:116–135Google Scholar
  12. 12.
    Friedland GW. Recurrent urinary tract infections in infants and children. Radiol Clin North Am 1977;15:19–35PubMedGoogle Scholar
  13. 13.
    Gierup P. Micturition studies in infants and children. Scand J Urol Nephrol 1970;4:191–207CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon I, Peters AM, Mornoy S. Indirect radionuclide cystography: a sensitive technique for the detection of vesico-ureteral reflux. Pediatric Nephrology 1990;4:604–606CrossRefPubMedGoogle Scholar
  15. 15.
    Hass EA, Solomon DJ. Telling children about diagnostic radiology procedures. Radiology 1977; 124:521PubMedGoogle Scholar
  16. 16.
    Hodson CJ, Edwards D. Chronic pyelonephritis and vesicoureteric reflux. Clin Radiol 1960; 11:219–231CrossRefPubMedGoogle Scholar
  17. 17.
    Hutch JA. Aberrant micturition. J Urol 1966; 96:743–745PubMedGoogle Scholar
  18. 18.
    Hutch JA. Theory of maturation of the intravesical ureter. J Urol 1961 ;86:534–538PubMedGoogle Scholar
  19. 19.
    International Reflux Study Committee. Medical versus surgical treatment of primary vesicoureteral reflux. Pediatrics 1981;67:392–400Google Scholar
  20. 20.
    Kenda RB, Fettich JJ. Vesicoureteric reflux and renal scars in asymptomatic siblings of children with reflux. Arch Dis Child 1992;67:506–508CrossRefPubMedGoogle Scholar
  21. 21.
    King LR. Vesicoureteral reflux: history, etiology, and conservative management. In Kelalis PD, King LR, Belman AB (eds): Clinical Pediatric Urology. Philadelphia: Saunders, 1976Google Scholar
  22. 22.
    Koff SA. Estimating bladder capacity in children. Urology 1983;21:248CrossRefPubMedGoogle Scholar
  23. 23.
    Lattimer JK, Apperson JW, Gleason DM, Baker D, Flemming SS. The pressure at which reflux occurs, an important indicator of prognosis and treatment. J Urol 1963;89:395–404Google Scholar
  24. 24.
    Leibovic SJ, Lebowitz RL. Reducing patient dose in voiding cystourethrography. Urol Radiol 1980; 2:103–107CrossRefGoogle Scholar
  25. 25.
    Loevinger R, Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides. In: MIRD Pamphlet No. 1. New York: Society of Nuclear Medicine, 1975Google Scholar
  26. 26.
    Lyon RP, Marshall S, Tanagho EA. Theory of maturation; a critique. J Urol 1970; 103:795–800PubMedGoogle Scholar
  27. 27.
    Majd M, Kass EJ, Belman AB. Radionuclide cystography in children: comparison of direct (retrograde) and indirect (intravenous) techniques. Ann Radiol 1985;28:322–328PubMedGoogle Scholar
  28. 28.
    Noe HN. The long term results of prospective sibling reflux screening. J Urol 1992;148:1739–1742PubMedGoogle Scholar
  29. 29.
    Normand LCS, Smellie J. Vesicoureteric reflux: the case for conservative management. In Hodson J, Kincaid SP (eds): Reflux Nephropathy. New York: Masson, 1979Google Scholar
  30. 30.
    Orr WA, Kimbrough H, Gillenwater JY Alterations in renal blood flow with voiding in the presence of vesicoureteral reflux. J Urol 1971;106:214–219PubMedGoogle Scholar
  31. 31.
    Pozderac RV, Becker CJ, Reitelman C, Kuhns LR. Comparison of single and two stage radionuclide cystography (RNC) for evaluation of reflux [abstract]. J Nuc lMed l990;31:893Google Scholar
  32. 32.
    Poznanski E, Poznanski A. Psychogenic influences on voiding: observations from voiding cystourethrography. Psychosomatics 1969;10:339–342PubMedGoogle Scholar
  33. 33.
    Ransley PG. Vesicoureteric reflux. In Williams DI, Johnston JH (eds): Pediatric Urology. London: But-terworth, 1982Google Scholar
  34. 34.
    Rolleston GL, Mailing TJ, Hodson CJ. Intrarenal reflux and the scarred kidney. Arch Dis Child 1974; 49:531–539CrossRefPubMedGoogle Scholar
  35. 35.
    Rolleston GL, Shannon FT, Utley WLF. Follow-up of vesicoureteric reflux in the newborn. Kidney Int 1975;4:S59-S64Google Scholar
  36. 36.
    Rolleston GL, Shannon FT, Utley WLF. Relationship of infantile vesicoureteral reflux to renal damage. BMJ 1970;70:460–463CrossRefGoogle Scholar
  37. 37.
    Smellie J, Edwards D, Hunter N, Normand ICS, Prescod N. Vesicoureteral reflux and renal scarring. Kidney Int 1975;4:S65-S72Google Scholar
  38. 38.
    Smith JC. Urethral resistance to micturition. Br J Urol 1968;40:125–155CrossRefPubMedGoogle Scholar
  39. 39.
    Snyder WS, Cook MJ, Nasset ES. Report of the task group on reference man. In: The International Commission on Radiological Protection. Oxford; Pergamon Press, 1975Google Scholar
  40. 40.
    Snyder WS, Ford MR, Warner GG. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of heterogenous phantom. In: MIRD Pamphlet No. 5. New York: Society of Nuclear Medicine, 1978Google Scholar
  41. 41.
    Spencer RP, Treves S. Bladder emptying flow rates as a function of bladder volume. Yale J Biol Med 1971;44:199–205PubMedGoogle Scholar
  42. 42.
    Starfield B. Functional bladder capacity in enuretic and nonenuretic children. J Pediatr 1974; 111: 167–172Google Scholar
  43. 43.
    Stephens FD. Urologic aspects of recurrent urinary tract infections in children. J Pediatr 1972; 80:725–737CrossRefPubMedGoogle Scholar
  44. 44.
    Stephens FD, Lenaghan D. The anatomical basis and dynamics of vesicoureteral reflux. J Urol 1962; 87:669–680PubMedGoogle Scholar
  45. 45.
    Strauss BS, Balufox MD. Estimation of residual urine and urine flow rates without urethral catheterization. J Nucl Med 1970; 11:81–84PubMedGoogle Scholar
  46. 46.
    Tanagho EA, Meyers FH, Smith DR. Urethral resistance: its components and implications. I. Smooth muscle component. Invest Urol 1969;7:136–149PubMedGoogle Scholar
  47. 47.
    Tanagho EA, Meyers FH, Smith DR. Urethral resistance: its components and implications. II. Striated muscle component. Invest Urol 1969 ;7:195–205PubMedGoogle Scholar
  48. 48.
    Treves ST, Mitchell K, Sheu E, Zurakowski D. Functional bladder capacity in children under 13 years of age: a non-linear relationship. In preparation, 1994Google Scholar
  49. 49.
    Van den Abbelle AD, Treves ST, Lebowitz RL, et al. Vesicoureteral reflux in asymptomatic siblings of patients with known reflux: radionuclide cystography. Pediatrics 1987;79:147–153Google Scholar
  50. 50.
    Whitaker J, Johnston GS. Urinary flow rate with two techniques of bladder pressure measurement. Invest Urol 1966;4:235–238PubMedGoogle Scholar
  51. 51.
    Willi U, Treves ST. Radionuclide voiding cystography. Urol Radiol 1983;5:161–173CrossRefPubMedGoogle Scholar
  52. 52.
    Willi U, Treves ST. Radionuclide voiding cystography. In Treves ST (ed): Pediatric Nuclear Medicine. New York: Springer-Verlag, 1985:105–120Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • S. T. Treves
  • M. Gelfand
  • U. V. Willi

There are no affiliations available

Personalised recommendations