Skip to main content

Bone

  • Chapter

Abstract

Skeletal scintigraphy is a highly sensitive technique for the diagnosis of bone disorders in children. Since the introduction of technetium-99m (99mTc)-labeled phosphates in 1971157, skeletal scintigraphy has become one of the most common examinations in pediatric nuclear medicine. The high sensitivity of phosphate scintigraphy is accompanied in some instances by a relatively low specificity. Hence, there has been an ongoing interest in the use of other radiopharmaceuticals with different mechanisms of uptake from those of the radiophosphates that may add specificity to the diagnosis and evaluation of certain skeletal diseases. Examples of such radiopharmaceuticals include gallium-67 (67Ga) citrate, thallium-201 (201Tl) chloride, 99mTc -methoxy-isobutyl isonitrile (MIBI), iodines-123 and -131 (123I, 131I)-metaiodobenzylguanidine, 99mTc -white blood cells (WBCs), indium-111 (111MIn)-WBCs, 99mTc -sulfur colloid, and 111In chloride.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aegerter E, Kirkpatrick JA. Orthopedic Diseases: Physiology, Pathology, Radiology (4th ed). Philadelphia: Saunders, 1975.

    Google Scholar 

  2. Amundsen T, Siegel M, Siegel B. Osteomyelitis and infarction in sickle cell hemoglobinopathies: differentiation by combined technetium and gallium scintigraphy. Radiology 1984;153:807–812

    CAS  PubMed  Google Scholar 

  3. Anonymous. Neuroblastoma. Manual for Staging of Cancer. Philadelphia: Lippincott, 1983:237–239

    Google Scholar 

  4. Ash JM, Gilday DL. The futility of bone scanning neonatal osteomyelitis: concise communication. J Nucl Med 1980;21:417–420

    CAS  PubMed  Google Scholar 

  5. Askin FB, Rosai J, Sibley RK, Dehner LP, McAlister WH. Malignant small cell tumor of the thoracopulmonary region in childhood. Cancer 1979;43:2438–2451

    CAS  PubMed  Google Scholar 

  6. Atkins HL, Hauser W, Richards P. Factors affecting distribution of technetium-99m sulfur colloid. J Reticuloendothel Soc 1970;8:176–184

    CAS  PubMed  Google Scholar 

  7. Azous EM, Greenspan A, Marton D. CT evaluation of primary epiphyseal bone abscess. Skeletal Radiol 1993;22:17–23

    Google Scholar 

  8. Bachmann KD. Das neuroblastoma sympathicum: Klinik ude Prognose von 1030 Fallen. Kinderheilk 1962;86:710–724

    CAS  Google Scholar 

  9. Bell EG, McAfee JB, Mahon DF. Bone scanning. In Schneider PB, Treves S (eds): Nuclear Medicine in Clinical Practice. Amsterdam: Elsevier, 1978

    Google Scholar 

  10. Bellah RD, Summerville DA, Treves ST, Micheli LJ. Low-back pain in adolescent athletes: detection of stress injury in the pars interarticularis with SPECT. Radiology 1991;180:509–512

    CAS  PubMed  Google Scholar 

  11. Beltran J, Noto AM, McGhee RB, Freedy RM, McCalla MS. Infections of the musculoskeletal system: high-field-strength MR. Radiology 1987; 164:449–454

    CAS  PubMed  Google Scholar 

  12. BenAmi T, Treves ST, Tumeh S, Cox BJ, McCarthy C. Stress fractures after surgery for osteosarcoma: scintigraphic assessment. Radiology 1987; 163: 157–162

    CAS  Google Scholar 

  13. Bergstedt HF. Bone scintigraphy of facial skeleton with Tc-99m diphosphonate. Acta Radiol [Diagn] 1975;16:337–341

    CAS  Google Scholar 

  14. Berkowitz ID, and Wenzel W. “Normal” technetium bone scans in patients with acute osteomyelitis. Am J Dis Child 1980;134:828–830

    CAS  PubMed  Google Scholar 

  15. Bloem JL, Kroon HK. Osseous lesions. Radiol Clin North Am, 1993;31:261–278

    CAS  PubMed  Google Scholar 

  16. Bonte FJ, Parkey RW, Graham KD, Moore J, Stokely EM. A new method for radionuclide imaging of acute myocardial infarcts. Radiology 1974; 110:473–474

    CAS  PubMed  Google Scholar 

  17. Bos CFA, Bloem JL, Bloem RM. Sequential magnetic resonanace imaging in Perthes’ disease. J Bone Joint Surg [Br] 1991;73:219–224

    CAS  Google Scholar 

  18. Bressler E, Conway J, Weiss S. Neonatal osteomyelitis examined by bone scintigraphy. Radiology 1984;1984:685–688

    Google Scholar 

  19. Brighton C. Principles of fracture healing. Instruct Course Lect 1984:60–82

    Google Scholar 

  20. Brodeur GM, Prichard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993;11:1466–1477

    CAS  PubMed  Google Scholar 

  21. Brown ML. The role of radionuclides in the patient with osteogenic sarcoma. Semin Roentgenol 1989; 24:185–192

    CAS  PubMed  Google Scholar 

  22. Burt RW, Matthews TJ. Aseptic necrosis of the knee: bone scintigraphy. AJR 1982;138:571–573

    CAS  PubMed  Google Scholar 

  23. Cade S. Osteogenic sarcoma: a study based on 133 patients. J R Coll Surg Edinb 1955; 1:79–111

    CAS  PubMed  Google Scholar 

  24. Caffey J. Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiologic features. Br J Radiol 1957;30:225–238

    CAS  PubMed  Google Scholar 

  25. Caffey J, Silverman F. Infantile cortical hyperostoses: preliminary report on a new syndrome. AJR 1945;54:1–3

    Google Scholar 

  26. Caldicott WJH. Diagnosis of spinal osteoid osteoma. Radiology 1969;92:1192–1195

    CAS  PubMed  Google Scholar 

  27. Caluser C., Macapinlac H, Healey J, et al. The relationship between thallium uptake, blood flow, and blood pool activity in bone and soft tissue tumors. Clin Nucl Med 1992;17:565–572

    CAS  PubMed  Google Scholar 

  28. Calve J. Sur ure forme particuliere de psuddocoxal-gia. Rev Chirop 1910;30:54

    Google Scholar 

  29. Calver R, Venugopal V, Dorgan J, Bentley G, Gimlette T. Radionuclide scanning in early diagnosis of Perthes’ disease. J Bone Joint Surg [Br] 1981;63B:379–382

    Google Scholar 

  30. Carty H, Maxted M, Fielding J, Gulliford P, Owen R. Isotope scanning in the “irritable hip syndrome.” Skeletal Radiol 1984;11:32–37

    CAS  PubMed  Google Scholar 

  31. Cavailloles F, Bok B, Bensahel H. Bone scintigraphy in the diagnosis and followup of Perthes’ disease. Eur J Nucl Med 1982;7:327–330

    CAS  PubMed  Google Scholar 

  32. Chandnani VP, Beltran J, Morris CS, et al. Acute experimental osteomyelitis and abscesses: detection of MR imaging versus CT. Radiology 1990;174:233–236

    CAS  PubMed  Google Scholar 

  33. Chew FS, Hudson TM. Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns. AJR 1982;139:49–54

    CAS  PubMed  Google Scholar 

  34. Coley BL, Higinbotham NL, Bowden L. Endothelioma of bone (Ewing’s sarcoma). Ann Surg 1948;128:533–560

    Google Scholar 

  35. Conway J. Further comments on the role of skeletal survey in the diagnosis of suspected child abuse (letter to the editor). Radiology 1983; 148:574–575

    Google Scholar 

  36. Conway JJ, Collins M, Tanz RR, et al. The role of bone scintigraphy in detecting child abuse. Semin Nucl Med 1993;23:321–333

    CAS  PubMed  Google Scholar 

  37. Dangman BC, Hoffer FA, Rand FF, O’Rourke EJ. Osteomyelitis in children: gadolinium-enhanced MR imaging. Radiology 1992;182:743–748

    CAS  PubMed  Google Scholar 

  38. Danigelis JA. Pinhole imaging in Legg-Perthes disease: further observations. Semin Nucl Med 1976; 6:69–82

    CAS  PubMed  Google Scholar 

  39. DeLand FH, Tilden RL, Jackson J, Enneking WF, McVey JT. Cellular localization of Tc-99m polyphosphate. J Nucl Med 1973;14:390

    Google Scholar 

  40. Devas MB. Stress fractures of the tibia in athletes or “shin soreness.” J Bone Joint Surg [Br] 1958; 40B:227–239

    Google Scholar 

  41. Devas MB. Stress Fractures. Edinburgh; Churchill Livingstone, 1975

    Google Scholar 

  42. Diament M. Should the radionuclide skeletal survey be used as a screening procedure in suspected child abuse victims. Radiology 1983;148:573–576

    CAS  PubMed  Google Scholar 

  43. Dobson EL, Gofman JW, Jones HB, Kelly LS, Walker LA. Studies with colloids containing radioisotopes of yttrium, zirconium, columbium and lanthanum in bone marrow, liver and spleen. J Lab Clin Med 1949;34:305–312

    CAS  PubMed  Google Scholar 

  44. Dobson EL, Jones HB. Behavior of intravenously injected particulate material: its rate of disappearance from the blood stream as a measurement of liver blood flow. Acta Med Scand Suppl 1953;144:1–71

    Google Scholar 

  45. Eiber F, Giuliano A, Eckardt J, et al. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol 1987;5:21–26

    Google Scholar 

  46. Elgazzar AH, Malki AA, Abdel-Dayem HM, et al. Role of thallium-201 in the diagnosis of solitary bone lesions. Nucl Med Commun 1989; 10:477–485

    CAS  PubMed  Google Scholar 

  47. Erdman WA, Tamburro F, Jayson HT, et al. Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 1991; 180:533–539

    CAS  PubMed  Google Scholar 

  48. Erlemann R, Sciuk J, Bosse A. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 1990;175:791–796

    CAS  PubMed  Google Scholar 

  49. Estes DN, Magill HL, Thompson EL, Hayes FA. Primary Ewing sarcoma: follow-up with Ga-67 scintigraphy. Radiology 1990;177:449–453

    CAS  PubMed  Google Scholar 

  50. Evans AE, D’Angio GJ, Randolph J. A proposed staging for children with neuroblastoma. Cancer 1971;27:374–378

    CAS  PubMed  Google Scholar 

  51. Everson TC, Tilden C. Spontaneous Regression of Cancer: Study and Abstracts of Reports in the World Medical Literature and of Personal Communication Concerning Spontaneous Regression of Malignant Disease. Philadelphia: Saunders, 1966

    Google Scholar 

  52. Ewing J. diffuse endothelioma of bone. Proc NY Pathol Soc 1921;21:17–24

    Google Scholar 

  53. Ewing J. Further report on endothelial myeloma of bone. Proc NY Pathol Soc 1924;24:93–100

    Google Scholar 

  54. Fasting O, Langeland M, Bjerkreim I, Hertzenberg L, Nakken K. Bone scintigraphy in early diagnosis of Perthes’ disease. Acta Orthop Scand 1978; 49:169–174

    CAS  PubMed  Google Scholar 

  55. Fernbach DJ, Williams TE, Donaldson MH. Neuroblastoma. Sutow W, Vietti T, Fernbach D (eds): In Clinical Pediatric Oncology. St. Louis: Mosby 1984

    Google Scholar 

  56. Fischer KC, Shapiro S, Treves S. Visualization of the spleen with a bone-seeking radionuclide in a child with sickle-cell anemia. Radiology 1977; 122:398

    CAS  PubMed  Google Scholar 

  57. Fisher RL, Roderique JW, Brown DC, et al. The relationship of isotopic bone imaging findings to prognosis in Legg-Perthes disease. Clin Orthop 1980;150:23–29

    PubMed  Google Scholar 

  58. Fordham EW, Ramachandran PC. Radionuclide imaging of osseous trauma. Semin Nucl Med 1974;4:411–429

    CAS  PubMed  Google Scholar 

  59. Franco A, Levine H, Hall A. Rheumatoid pericarditis: report of 17 cases diagnosed clinically. Ann Intern Med 1972;77:837–844

    CAS  PubMed  Google Scholar 

  60. Freiberger RH. Osteoid osteoma of the spine: a cause of backache and scoliosis in children and young adults. Radiology 1960;75:232–236

    Google Scholar 

  61. Geslien GE, Thrall JH, Espinosa JE, Older RA. Early detection of stress fractures using Tc-99m polyphosphate. Radiology 1976;121:683–687

    CAS  PubMed  Google Scholar 

  62. Gilday DL, Ash JM. Benign bone tumors. Semin Nucl Med 1976;6:33–46

    CAS  PubMed  Google Scholar 

  63. Gold RH, Hawkins RA, Katz RD. Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR 1991;156:365–370

    Google Scholar 

  64. Goldstein H. McNeil BJ, Zufall E, Jaffe N, Treves S. Changing indications for bone scintigraphy in patients with osteosarcoma. Radiology 1980; 135:177–180

    CAS  PubMed  Google Scholar 

  65. Goldstein H, McNeil BJ, Zufall E, Treves S. Is there still a place for bone scanning in Ewing’s sacroma? J Nucl Med 1980;21:10–12

    CAS  PubMed  Google Scholar 

  66. Greyson ND, Pang S. The variable bone scan appearances of nonosteogenic fibroma of bone. Clin Nucl Med 1981;6:242–245

    CAS  PubMed  Google Scholar 

  67. Guin GH, Gilbert EF, Jones B. Incidental neuroblastoma in infants. Am J Clin Pathol 1969;51:126–136

    CAS  PubMed  Google Scholar 

  68. Haase G, Ortiz V, Stakianakis G, Morse T. The value of radionuclide bone scanning in the early recognition of deliverate child abuse. J Trauma 1980; 20:873–875

    CAS  PubMed  Google Scholar 

  69. Habermann ET, Stern RE. Osteoid osteoma of the tibia in an eight month old boy: a case report. J Bone Joint Surg [Am] 1974;56A:633–636

    Google Scholar 

  70. Halle J. Diagnostic imaging of child abuse. Pediatrics 1991;87:262–264

    Google Scholar 

  71. Harcke HT. Bone imaging in infants and children: a review. J Nucl Med 1978; 19:324–329

    PubMed  Google Scholar 

  72. Hayes F, Green A, Hustu H, Kumar M. Surgicopathologic staging of neuroblastoma: prognostic significance of regional lymph node metastases. J Pediatr 1983;102:59–62

    CAS  PubMed  Google Scholar 

  73. Hayles AB, Dahlin DC, Coventry MB. Osteogenic sarcoma in children. JAMA 1960; 174:1174–1177

    CAS  PubMed  Google Scholar 

  74. Hernandez RJ. Visualization of small sequestra by computerized tomography: report of 6 cases. Pediatr Radiol 1985;15:238–241

    CAS  PubMed  Google Scholar 

  75. Herring JA, Neustdat JB, Williams JJ, Early JS, Browne RH. The lateral pillar classification of Legg-Calvé-Perthes disease. J Pediatr Orthop 1992;12:143–150

    CAS  PubMed  Google Scholar 

  76. Heyman S, Davis MA, Shulkin PA, Treves S. Biologic evaluation of radiocolloids for bone marrow scintigraphy. In Radiopharmaceuticals II. Proceedings of the 2nd International Symposium on Radiopharmaceuticals. New York: Society of Nuclear Medicine, 1979

    Google Scholar 

  77. Heyman S. Goldstein HA, Crowley W, Treves S. The scintigraphic evaluation of hip pain in children. Clin Nucl Med 1980;5:109–115

    CAS  PubMed  Google Scholar 

  78. Hildebrand ZC. Uber das rubulare Angiosarkom oder Endotheliom des Knochens. Dtsch Z Chir 1918;31:262–281

    Google Scholar 

  79. Hoffer P. Gallium and infection. J Nucl Med 1980;21:484–488

    CAS  PubMed  Google Scholar 

  80. Howard JL, Barron BJ, Smith GG. Bone scintigraphy in the evaluation of extraskeletal injuries from child abuse. Radiographics 1990; 10:67–81

    CAS  PubMed  Google Scholar 

  81. Howie D, Savage J, Wilson T, Patterson D. The technetium phosphate bone scan in the diagnosis of Osteomyelitis in childhood. J Bone Joint Surg [Am] 1983;65:431–437

    CAS  Google Scholar 

  82. Howman GR, Gilday DL, Ash JM. Radionuclide skeletal survey in neuroblastoma. Radiology 1979;131:497–502

    Google Scholar 

  83. Howman-Giles R, Uren R. Multifocal osteomyelitis in childhood: review by radionuclide bone scan. Clin Nucl Med 1992;17:274–278

    CAS  PubMed  Google Scholar 

  84. Huvos A. Bone Tumors. Diagnosis, Treatment and Prognosis. Philadelphia: Saunders, 1979

    Google Scholar 

  85. Jaffe N. Osteogenic sarcoma: state of the art with high-dose methotrexate treatment. Clin Orthop 1976;120:95–102

    PubMed  Google Scholar 

  86. Jaffe N, Traggis D, Sallan S, Cassady R. Improved outlook for Ewing’s sarcoma with combination chemotherapy (vincristine, actinomycin D and cyclophosphamide) and radiation therapy. Cancer 1976;38:1925–1930

    CAS  PubMed  Google Scholar 

  87. Johnson LC, Stradford HT, Geis RW, Dineen JR, Kerley E. Histogenesis of stress fractures. J Bone Joint Surg [Am] 1963;45A:1542

    Google Scholar 

  88. Jones DC, Cady RB. “Cold” bone scans in acute osteomyelitis. J Bone Joint Surg [Br] 1981;63B:376–378

    Google Scholar 

  89. Jürgens H, Exner U, Gadner H. Multidisciplinary treatment of primary Ewing’s sarcoma of bone: a 6-year experience of a European cooperative trail. Cancer 1988;61:23–32

    PubMed  Google Scholar 

  90. Keeley K, Buchanan GR. Acute infarction of long bones in children with sickle cell anemia. J Pediatr 1982;101:170–175

    CAS  PubMed  Google Scholar 

  91. Kern KA, Brunetti A, Norton JA. Metabolic imaging of human extremity musculoskeletal tumors by PET. JNuclMed 1988;29:181–186

    CAS  Google Scholar 

  92. Kleinman PK. Diagnostic imaging in infant abuse. AJR 1990;155:703–712

    CAS  PubMed  Google Scholar 

  93. Knop J, Dellin G, Heise U, Winkler K. Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma: correlation of 99mTc -methylene diphosphonate parametric imaging with surgical history pathology. Skeletal Radiol 1990;19:165–172

    CAS  PubMed  Google Scholar 

  94. Kricun ME. Red-yellow marrow conversion: its effects on the location of some solitary bone lesions. Skeletal Radiol 1985;14:10–19

    CAS  PubMed  Google Scholar 

  95. Kumar R, Balachandran S. Relative roles of radionuclide scanning and radiographic imaging in eosinophilic granuloma. Clin Nucl Med 1980; 5:538–542

    CAS  PubMed  Google Scholar 

  96. LaMont RL, Muz J, Heilbronner D, Bouwhuis JA. Quantitative assessment of femoral head involvement in Legg-Calvé-Perthes disease. J Bone Joint Surg [Am] 1981;63A:746–752

    Google Scholar 

  97. Legg A. An obscure affection of the hip joint. Boston Med J 1910;162:202

    Google Scholar 

  98. Levinson ED, Spencer RP. Radionuclide and ultrasound images as potential prognostic indicators in neuroblastoma. Invest Radiol 1981;16:373

    Google Scholar 

  99. Link MP, Goorin AM, Miser AW, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986;314:1600–1606

    CAS  PubMed  Google Scholar 

  100. Lucie RS, Fuller S, Burdick DC, Johnston RM. Early prediction of avascular necrosis of the femoral head following femoral neck fractures. Clin Orthop 1981;161:207–214

    PubMed  Google Scholar 

  101. Lucke A. Beitrage zur Geschwulstlehre. Virchows Arch [Pathol Anat] 1918;35:524–539

    Google Scholar 

  102. MacLellan DI, Wilson FC. Osteoid osteoma of the spine. J Bone Joint Surg [Am] 1967;49A: 111–121

    Google Scholar 

  103. Markwald VA. Ein fall von multiplem intravascu-larem Endotheliom in den gesammten Knochen des Skelets (Myelom, Angiosarcoma Virchows Arch [PatholAnat] 1918;141:128–152

    Google Scholar 

  104. Martindale AW, Papadimitriou JM, and Turner JH. Technetium-99m antimony colloid for bone marrow imaging. J Nucl Med 1980;21:1035–1041

    CAS  PubMed  Google Scholar 

  105. Marty R, Denney J, McKamey MR, Rowley MJ. Bone trauma and related benign disease: assessment by bone scanning. Semin Nucl Med 1976; 6:107–120

    CAS  PubMed  Google Scholar 

  106. Mauer AM. Neoplasma and neoplasmalike lesions. In Vaughan V, McKay R, Behrman R (eds): Nelson’s Textbook of Pediatrics. Philadelphia: Saunders. 1979:1426–1468

    Google Scholar 

  107. Maurer AH, Chen D, Camargo EE, et al. Utility of three-phase skeletal scintigraphy in suspected osteomyelitis: concise communication. J Nucl Med 1981;22:941–949

    CAS  PubMed  Google Scholar 

  108. McCaffee JG, Subramanian G. Radioactiveagents for imaging. In Freeman L, Johnson P (eds): Clinical Scintillation Imaging. Orlando, FL: Grune &Stratton, 1975:13–114

    Google Scholar 

  109. McAffee JG, Subramanian G, Aburano T, et al. A new formulation of Tc-99m minimicroaggregated albumin for marrow imaging: comparison with other colloids, In-111 and Fe-59. J Nucl Med 1982;23:21–28

    Google Scholar 

  110. McKillop JH, Etcubanas E, Goris ML. The indications for and limitations of bone scintigraphy in osteogenic sarcoma: a review of 55 patients. Cancer 1981;48:1133–1138

    CAS  PubMed  Google Scholar 

  111. Menendez LR, Fideler BM, Mirra J. Thallium-201 scanning for the evaluation of osteosarcoma and soft-tissue sarcoma. J Bone Joint Surg [A] 1993; 75:526–531

    CAS  Google Scholar 

  112. Merkel KD, Fitzgerald RH, Brown ML. Scintigraphic evaluation in musculoskeletal sepsis. Orthop Clin North Am 1984;15:401–416

    CAS  PubMed  Google Scholar 

  113. Merkel KD, Brown ML, Dewanjee MK, Fitzgerald RHJ. Comparison of indium-labeled-leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis: a prospective study. J Bone Joint Surg [A] 1985;67:465–476

    CAS  Google Scholar 

  114. Merten D. The abused child: a radiological reappraisal. Radiology 1983;1983:377–381

    Google Scholar 

  115. Miller RW, Fraumeni JF, Hill JA. Neuroblastoma: epidemiologic approach to its origin. Am J Dis Child 1968;115:253–261

    CAS  PubMed  Google Scholar 

  116. Murray I. Bone scanning in the child and young adult. Part II. Skeletal Radiol 1980;5:65–76

    CAS  PubMed  Google Scholar 

  117. Nair N. Bone scanning in Ewing’s sarcoma. J Nucl Med 1985;26:349–352

    CAS  PubMed  Google Scholar 

  118. Nance FL, Fonseca RJ, Burkes EJ. Technetium bone imaging as an adjunct in the management of fibrous dysplasia. Oral Surg 1980;50:199–206

    CAS  PubMed  Google Scholar 

  119. Nelson HT, Taylor A. Bone scanning in the diagnosis of acute osteomyelitis. Eur J Nucl Med 1980;5:267–269

    CAS  PubMed  Google Scholar 

  120. Omojola MF, Cockshott WP, Beatty EG. Osteoid osteoma: an evaluation of diagnostic modalities. Clin Radiol 1981;32:199–205

    CAS  PubMed  Google Scholar 

  121. Oseas RS, Siddiqui AR, Wellman HN, Baehner RL. Usefulness of bone marrow imaging in childhood malignancies. J Pediatr 1982;101:206–209

    CAS  PubMed  Google Scholar 

  122. Padfield E, Hicken P. Cortical hyperostosis in infants: a radiological study of 16 patients. Br J Radiol 1970; 143:231–237

    Google Scholar 

  123. Palestro CJ, Roumanas P, Swyer AJ, Kim CK, Goldsmith SJ. Diagnosis of musculoskeletal infection using combined In-Ill labeled leukocyte and Tc-99m SC marrow imaging. Clin Nucl Med 1992;7:269–273

    Google Scholar 

  124. Park HM, Kernek CB, Robb JA. Early scintigraphic findings of occult femoral and tibial fractures in infants. Clin Nucl Med 1988;13:271–275

    CAS  PubMed  Google Scholar 

  125. Parker BR, Pinckney L, Etcubanas E. Relative efficacy of radiographic and radionuclide bone surveys in the detection of the skeletal lesions of histiocytosis X. Radiology 1980;134:377–380

    CAS  PubMed  Google Scholar 

  126. Peller P, Ho V, Kransdorf M. Extraosseous Tc-99m MDP uptake; a pathophysiologic approach. Radiographics 1993;13:715–734

    CAS  PubMed  Google Scholar 

  127. Perthes G. Uber arthritis deformans juvenilis. Deutsch ZChir 1910; 107:111

    Google Scholar 

  128. Perthes G. Uber osteochondritis deformans juvenilis. Arch Klin Chir 1913;101:779–807

    Google Scholar 

  129. Peterson DR, Bill AJ, Kirkland IS. Neuroblastoma trends in time. J Pediatr Surg 1969;4:244–249

    CAS  PubMed  Google Scholar 

  130. Ponsetti IV, Maynard JA, Weinstein SL, Ippolito EG, Pous JG. Legg-Calvé-Perthes disease: histo-chemical and ultrastructural observations of the epiphyseal cartilage and physis. J Bone Joint Surg [Am] 1983;65A:797

    Google Scholar 

  131. Pope TL, Teague WG, Kossack R, Bray ST, Flannery DB. Pseudomonas sacroilic osteomyelitis: diagnosisVby gallium citrate Ga-67 scan. Am J Dis Child 1982;136:649–650

    CAS  PubMed  Google Scholar 

  132. Ram P, Martinez S, Korobkin M, et al. CT detection of intraosseous gas: a new sign of osteomyelitis. AJR 1981;137:721–723

    CAS  PubMed  Google Scholar 

  133. Ramanna L, Waxman A, Binney G, et al. Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and technetium-MDP in the evaluation of chemotherapeutic response. J Nucl Med 1990; 31:567–572

    CAS  PubMed  Google Scholar 

  134. Raptopoulos V, Doherty P, Goss T, et al. Cute osteomyelitis: advantage of white cell scans in early detection. AJR 1982;139:1077–1082

    CAS  PubMed  Google Scholar 

  135. Rees CR, Siddiqui AR, duCret R. The role of bone scintigraphy in osteogenic sarcoma. Skeletal Radiol 1986;15:365–367

    CAS  PubMed  Google Scholar 

  136. Reiman RE, Rosen G, Gelbard AS. Diagnostic demands in clinical and experimental onology: application of substrates labeled with positron-emission radionuclides. In Knapp WH, Vyska K (eds): Current Topics in Tumor Cell Physiology and Positron-Emission Tomography. New York: Springer-Verlag, 1984:73–85

    Google Scholar 

  137. Roach P, Hoschi R. Diffuse femoral uptake on bone scan following overt fracture in an infant.

    Google Scholar 

  138. Roach P, Itrato D, Treves S. Bowel visualization on bone scan due to protein losing enteropathy. Clin Nucl Med 1994;(in press)

    Google Scholar 

  139. Rosen C, Caparros B, Mosende C, et al. Curability of Ewing’s sarcoma and considerations for future therapeutic trials. Cancer 1978;41:888–889

    CAS  PubMed  Google Scholar 

  140. Rosenfield NT. Osseous and extraosseous uptake of fluorine-18 and technetium-99m polyphosphate in children with neuroblastoma. Radiology 1974; 111:127–133

    CAS  PubMed  Google Scholar 

  141. Rosenthall L, Hill R, Chuang S. Observation on the use of 99mTc-phosphate imaging in peripheral bone trauma. Radiology 1976;119:637–641

    CAS  PubMed  Google Scholar 

  142. Saba TM, Blumenstock FA, Weber P, Kaplan JE. Physiologic role of cole indoluble globulin in host defense: implications of its characterization as an opsonic 2-surface-binding glycoprotein. Ann NY Acad Sci 1978;312:43–55

    CAS  PubMed  Google Scholar 

  143. Savoca C. Stress fractures, a classification of the earliest radiographic signs. Radiology 1971; 100:519–524

    CAS  PubMed  Google Scholar 

  144. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR 1992;158:9–18

    CAS  PubMed  Google Scholar 

  145. Seabold JE, Nepola JV, Marsh JL, et al. Postoperative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 1991;180:741–747

    CAS  PubMed  Google Scholar 

  146. Sehweil AM, McKillop JH, Milroy R. Mechanism of 201T1 uptake in tumors. Eur J Nucl Med 1989;15:376–379

    CAS  PubMed  Google Scholar 

  147. Siddiqui AR, Oseas RS, Wellman HN, Doerr DR, Baehner RL. Evaluation of bone marrow scanning with technetium-99m sulfur colloid in pediatric oncology. J Nucl Med 1979;20:379–386

    CAS  PubMed  Google Scholar 

  148. Siddiqui AR, Tashjian HJ, Lazarus K, Wellman HN, Baehner RL. Nuclear medicine studies in evaluation of skeletal lesions in children with histiocytosis X. Radiology 1981;140:787–789

    CAS  PubMed  Google Scholar 

  149. Simon MA, Kirchner PT. Scintigraphic evaluation of primary bone tumors comparison of technetium-99m phosphonate and gallium citrate imaging. J Bone Joint Surg [Am] 1980;62A:758–764

    Google Scholar 

  150. Smith F. Unsuspected costovertebral fractures demonstrated by bone scanning in the child abuse syndrome. Pediatr Radiol 1980;10:103–106

    CAS  PubMed  Google Scholar 

  151. Smith FW, Gilday DL. Scintigraphic appearances of osteoid osteoma. Radiology 1980;137:191–195

    CAS  PubMed  Google Scholar 

  152. Sommer HJ, Knop J, Heise U, Winkler K, Delling G. Histomorphologic changes of osteosarcoma after chemotherapy: correlation with 99mTc methylene diphosphanate functional imaging. Cancer 1987; 59:252–258

    CAS  PubMed  Google Scholar 

  153. Stark JE, Glasier CM, Blasier RD, Aronson J, Seibert JJ. Osteomyelitis in children with sickle cell disease: early diagnosis with contrast-enhanced CT. Radiology 1991;179:731–733

    CAS  PubMed  Google Scholar 

  154. Sty J, Simons G. Intraoperative 99m technetium bone imaging in the treatment of benign osteoblastic tumors. Clin Orthop 1982;165:223–227

    PubMed  Google Scholar 

  155. Sty J, Wells R, Starshak R, Gregg D. Diagnostic Imaging of Infants and Children (Vol. III). Gaithersburg, MD: Aspen Publishers, 1992

    Google Scholar 

  156. Sty JR, Starshak RJ. The role of bone scintigraphy in the evaluation of the suspected abused child. Radiology 1983;146:369–375

    CAS  PubMed  Google Scholar 

  157. Subramanian G, McAffee JG, Bell EG, et al. 99mTc-labeled polyphosphate as a skeletal imaging agent. Radiology 1972;102:701–704

    CAS  PubMed  Google Scholar 

  158. Sullivan DC, Rosenfield NS, Ogden J, Gottschalk A. Problems in the scintigraphic detection of osteomyelitis in children. Radiology 1980; 135:731–736

    CAS  PubMed  Google Scholar 

  159. Sutherland AD, Savage JP, Paterson DC, Foster BK. The nuclide bone scan in the diagnosis and management of Perthes’ disease. J Bone Joint Surg [Br] 1980;62:300–306

    CAS  Google Scholar 

  160. Syriopoulou VP, Smith AL. Sequential magnetic resonance imaging in Perthes’ disease. J Bone Joint Surg [Br] 1991;73:219–224

    Google Scholar 

  161. Tanaka T, Rossier AB, Hussey RW, Ahnberg DS, Treves S. Quantitative assessment of para-osteoarthropathy and its maturation on serial. Radiology 1977;123:217–221

    CAS  PubMed  Google Scholar 

  162. Taylor GA, Shea N, O’Brien T, Hall JE, Treves ST. Osteoid osteoma: localization by intraoperative magnification scintigraphy. Pediatr Radiol 1986; 16:313–316

    CAS  PubMed  Google Scholar 

  163. Tilden RL, Jackson J, Enneking WF, DeLand FH, McVey JT. Tc-99m-polyphosphate: histological localization in human femurs by autoradiography. J Nucl Med 1973;14:576–578

    CAS  PubMed  Google Scholar 

  164. Treves S, Khettry J, Broker FH, Wilkinson RH, Watts H. Osteomyelitis: early scintigraphic detection in children. Pediatrics 1976;57:173–186

    CAS  PubMed  Google Scholar 

  165. Treves ST, Kirkpatrick JA. Bone. In Treves ST (ed): Pediatric Nuclear Medicine. New York: Springer-Verlag, 1985

    Google Scholar 

  166. Van der Wall H, Murray ICP, Huckstep RL, Philips RL. The role of thallium scintigraphy in excluding malignancy of the bone. Clin Nucl Med 1993; 18:551–557

    PubMed  Google Scholar 

  167. Vanel D, Henry-Amar M, Lumbrosos J. Pulmonary evaluation of patients with osteosarcoma: roles of standard radiography, tomography, CT, scintigraphy, and tomoscintigraphy. AJR 1984;143:519–523

    CAS  PubMed  Google Scholar 

  168. Weinblatt ME, Miller JH. Radionuclide scanning in children with rhabdomyosarcoma. Med Pediatr Oncol 1981;9:293–301

    CAS  PubMed  Google Scholar 

  169. Wilcox JR, Moniot AL, Green JP. Bone scanning in the evaluation of exercise related stress injuries. Radiology 1977;123:699–703

    PubMed  Google Scholar 

  170. Wilson E. Stress fractures. Radiology 1969; 92:481–486

    PubMed  Google Scholar 

  171. Winer-Muram HT, Kauffman WM, Gronemeyer SA, and Jennings SG. Primitive neuroectodermic tumors of the chest wall (Askin tumors): CT and MRI findings. AJR 1993;161:265–268

    CAS  PubMed  Google Scholar 

  172. Worsley D, Lentle B. Uptake of technetium-99m MDP in primary amyloidosis with a review of the mechanisms of soft tissue localization of bone seeking radiopharmaceuticals [clinical conference]. J Nucl Med 1993;34:1612–1615

    CAS  PubMed  Google Scholar 

  173. Yeh SDJ, Rosen G, Caparros B. Semiquantitative gallium scintigraphy in patients with osteogenic sarcoma. Clin Nucl Med 1984;9:175–183

    CAS  PubMed  Google Scholar 

  174. Zawin JA, Hoffer FA, Rand FF, Teele RL. Joint effusion in children with irritable hip: US diagnosis and aspiration. Radiology 1993;187:459–463

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Treves, S.T., Connolly, L.P., Kirkpatrick, J.A., Packard, A.B., Roach, P., Jaramillo, D. (1995). Bone. In: Treves, S.T. (eds) Pediatric Nuclear Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4205-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4205-3_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4207-7

  • Online ISBN: 978-1-4757-4205-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics