Architecture of Normal Villous Trees

  • Kurt Benirschke
  • Peter Kaufmann


The ramifications of the villous trees can be subdivided into segments that differ mainly as to caliber, stromal structure, vessel structure, and position within the villous tree (Figure 64). Five villous types have been described (Kaufmann et al., 1979; Sen et al., 1979; Castellucci & Kaufmann, 1982a,b; Kaufmann, 1982; Castellucci et al., 1984, 1990; Burton, 1987), some of which can be further subdivided. As is discussed, all villous types derive from single precursors, the mesenchymal villi, which correspond to the tertiary villi of the early stages of placentation.


Human Placenta Capillary Loop Villous Tree Intervillous Space Fetal Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aladjem, S.: Morphopathology of the human placental villi and the fetal outcome. J. Obstet. Gynaecol. Br. Commonw. 75: 1237 - 1244, 1968.PubMedCrossRefGoogle Scholar
  2. Alvarez, H.: Syncytial proliferation in normal and toxemic pregnancies. Obstet. Gynecol. 29: 637 - 643, 1967.PubMedGoogle Scholar
  3. Alvarez, H., De Bejar, R., and Aladjem, S.: La placenta human: aspectos morfologicos y fisio-patologicos. In, 4th Uruguayan Congress for Obstetrics and Gynecology. Vol. 1, pp. 190 - 261, 1964.Google Scholar
  4. Alvarez, H., Morel, R.L., Benedetti, W.L., and Scavarelli, M.: Trophoblast hyperplasia and maternal arterial pressure at term. Am. J. Obstet. Gynecol. 105: 1015 - 1021, 1969.PubMedGoogle Scholar
  5. Alvarez, H., Benedetti, W.L., Morel, R.L., and Scavarelli, M.: Trophoblast development gradient and its relationship to placental hemodynamics. Am. J. Obstet. Gynecol. 106: 416 - 420, 1970.PubMedGoogle Scholar
  6. Alvarez, H., Medrano, C.V., Sala, M.A., and Benedetti, W.L.: Trophoblast development gradient and its relationship to placental hemodynamics. II. Study of fetal cotyledons from the toxemic placenta. Am. J. Obstet. Gynecol. 114: 873 - 878, 1972.PubMedGoogle Scholar
  7. Amaladoss, A.S.P., and Burton, G.J.: Organ culture of human placental villi in hypoxic and hyperoxic conditions: a morphometric study. J. Dev. Physiol. 7: 13 - 118, 1985.Google Scholar
  8. Amstutz, E.: Beobachtungen über die Reifung der Chorionzotten in der menschlichen Placenta mit besonderer Berücksichtigung der Epithelplatten. Acta Anat. (Basel) 42: 122 - 30, 1960.Google Scholar
  9. Ara, G., Bari, M.A., and Siddiquey, A.K.: Effects of age, parity and length of pregnancy on the morphology and histology of human placenta. Bangladesh Med. Res. Counc. Bull. 10: 53 - 58, 1984.Google Scholar
  10. Arnholdt, H., Meisel, F., Fandrey, K., and Löhrs, U.: Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch. B Cell Pathol. 60: 365 - 372, 1991.CrossRefGoogle Scholar
  11. Arts, N.F.T.: Investigation on the vascular system of the placenta. Am. J. Obstet. Gynecol. 82: 147 - 166, 1961.PubMedGoogle Scholar
  12. Bacon, B.J., Gilbert, R.D., Kaufmann, P., Smith, A.D., Trevino, F.T., and Longo, L.D.: Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta 5: 475 - 488, 1984.PubMedCrossRefGoogle Scholar
  13. Banovac, K., Ryan, E.A., and Sullivan, M.J.: Triiodothyronine (T3) nuclear binding sites in human placenta and decidua. Placenta 7: 543 - 549, 1986.PubMedCrossRefGoogle Scholar
  14. Bartels, H., and Moll, W.: Passage of inert substances and oxygen in the human placenta. Pflugers Arch. Ges. Physiol. 280: 165, 1964.CrossRefGoogle Scholar
  15. Becker, V.: Mechanismus der Reifung fetaler Organe. Verh. Dtsch. Pathol. Ges. 46: 309 - 314, 1962.Google Scholar
  16. Becker, V.: Funktionelle Morphologie der Plazenta. Arch. Gynecol. 198: 3 - 28, 1963.Google Scholar
  17. Becker, V.: Pathologie der Ausreifung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 266-281. Thieme, Stuttgart, 1981.Google Scholar
  18. Becker, V., and Jipp, P.: Über die Trophoblastschale der menschlichen Plazenta. Geburtshilfe Frauenheilkd. 23: 466474, 1963.Google Scholar
  19. Becker, V., and Seifert, K.: Die Ultrastruktur der Kapillarwand in der menschlichen Placenta zur Zeit der Schwangerschaftsmitte. Z. Zellforsch. 65: 380 - 396, 1965.PubMedCrossRefGoogle Scholar
  20. Beischer, N.A., Sivasamboo, R., Vohra, S., Silpisornkosal, S., and Reid, S.: Placental hypertrophy in severe pregnancy anaemia. J. Obstet. Gynaecol. Brit. Commonw. 77: 398409, 1970.Google Scholar
  21. Boe, F.: Studies on the vascularization of the human placenta. Acta Obstet. Gynecol. Scand. Suppl. 5 32: 1 - 92, 1953.CrossRefGoogle Scholar
  22. Boe, F.: Studies on the human placenta. II. Gross morphology of the fetal structures in the young placenta. Acta Obstet. Gynecol. Scand. 47: 420 - 435, 1968.CrossRefGoogle Scholar
  23. Boe, F.: Studies on the human placenta. III. Vascularization of the young fetal placenta. A. Vascularization of theGoogle Scholar
  24. chorionic villus. Acta Obstet. Gynecol. Scand. 48: 159 - 166, 1969.CrossRefGoogle Scholar
  25. Borell, U., Fernstroem, I., and Westman, A.: Eine arteriographische Studie des Plazentarkreislaufs. Geburtshilfe Frauenheilkd. 18: 1 - 9, 1958.PubMedGoogle Scholar
  26. Bouw, G.M., Stolte, L.A.M., Baak, J.P.A., and Oort, J.: Quantitative morphology of the placenta. 1. Standardization of sampling. Eur. J. Obstet. Gynecol. Reprod. Biol. 6: 325 - 331, 1976.CrossRefGoogle Scholar
  27. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heffer & Sons, Cambridge, 1970.Google Scholar
  28. Burton, G.J: The fine structure of the human placental villus as revealed by scanning electron microscopy. Scanning Electron Microsc. 1: 1811 - 1828, 1987.Google Scholar
  29. Burton, G.J., and Palmer, M.E.: Eradicating fetomaternal fluid shift during perfusion fixation of the human placenta. Placenta 9: 327 - 332, 1988.PubMedCrossRefGoogle Scholar
  30. Cantle, S.J., Kaufmann, P., Luckhardt, M., and Schweikhart, G.: Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8: 221 - 234, 1987.PubMedCrossRefGoogle Scholar
  31. Cappoen, J.P.: Physiology of the thyroid during pregnancy: various exploratory tests. Rev. Fr. Gynecol. Obstet. 84: 893 - 897, 1989.PubMedGoogle Scholar
  32. Castellucci, M., and Kaufmann, P.: A three-dimensional study of the normal human placental villous core. II. Stromal architecture. Placenta 3: 269 - 286, 1982a.PubMedCrossRefGoogle Scholar
  33. Castellucci, M., and Kaufmann, P.: Evolution of the stroma in human chorionic villi throughout pregnancy. Bibl. Anat. 22: 40 - 45, 1982b.PubMedGoogle Scholar
  34. Castellucci, M., Schweikhart, G., Kaufmann, P., and Zaccheo, D.: The stromal architecture of the immature intermediate villus of the human placenta. Gynecol. Obstet. Invest. 18: 95 - 99, 1984.PubMedCrossRefGoogle Scholar
  35. Castellucci, M., Scheper, M., Scheffen, I., Celona, A., and Kaufmann, P.: The development of the human placental villous tree. Anat. Embryol. (Berl.) 181: 117 - 128, 1990.CrossRefGoogle Scholar
  36. Challier, J.C., Hauguel, S., and Desmaizieres, V.: Effect of insulin on glucose uptake and metabolism in the human placenta. J. Clin. Endocrinol. Metab. 62: 803 - 807, 1986.PubMedCrossRefGoogle Scholar
  37. Chwalisz, K., Ciesla, I., and Garfield, R.E.: Inhibition of nitric oxide (NO) synthesis induces preterm parturition and preeclampsia-like conditions in guinea pigs. Presented at the Society for Gynecologic Investigation Meeting, 1994.Google Scholar
  38. Dantzer, V., Leiser, R., Kaufmann, P., and Luckhardt, M.: Comparative morphological aspects of placental vascularization. Trophoblast Res. 3: 221 - 244, 1988.Google Scholar
  39. Demir, R., Kaufmann, P., Castellucci, M., Erbengi, T., and Kotowski, A.: Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. (Basel) 136: 190 - 203, 1989.Google Scholar
  40. Demir, R., Demir, N., Kohnen, G., Kosanke, G., Mironov, V., Üstünel, I., and Kocamaz, E.: Ultrastructure and distribution of myofibroblast-like cells in human placental stem villi. Electron Microsc. 3: 509 - 510, 1992.Google Scholar
  41. Desoye, G., Hartmann, M., Blaschitz, A., Dohr, G., Hahn, T., Kohnen, G., and Kaufmann, P.: Insulin receptors in syncytiotrophoblast and fetal endothelium of human placenta: immunohistochemical evidence for developmental changes in distribution pattern. Histochemistry 101: 277285, 1994.Google Scholar
  42. Ehrhardt, G., Gerl, D., Estel, C., Kadner, J., and Günther, M.: Morphologische Auswertbarkeit von in vitro gewonnenen Punktionszylindern der Plazenta. Zentralbl. Gynakol. 96: 705 - 711, 1974.PubMedGoogle Scholar
  43. Enders, A.C., and King, B.F.: The cytology of Hofbauer cells. Anat. Rec. 167: 231 - 252, 1970.PubMedCrossRefGoogle Scholar
  44. Feneley, M.R., and Burton, G.J.: Villous composition and membrane thickness in the human placenta at term: a stereological study using unbiased estimators and optimal fixation techniques. Placenta 12: 131 - 142, 1991.PubMedCrossRefGoogle Scholar
  45. Fisher, D.A.: Maternal-fetal thyroid function in pregnancy. Clin. Perinatol. 10: 615 - 626, 1983.PubMedGoogle Scholar
  46. Fox, H.: The villous cytotrophoblast as an index of placental ischaemia. J. Obstet. Gynaecol. Br. Commonw. 71: 885893, 1964.Google Scholar
  47. Fox, H.: Effect of hypoxia on trophoblast in organ culture: a morphologic and autoradiographic study. Am. J. Obstet. Gynecol. 107: 1058 - 1064, 1970.PubMedGoogle Scholar
  48. Fox, H.: Pathology of the Placenta. Saunders, London, 1978.Google Scholar
  49. Freese, U.E.: The fetal-maternal circulation of the placenta. I. Histomorphologic, plastoid injection, and x-ray cinematographic studies on human placentas. Am. J. Obstet. Gynecol. 94: 354 - 360, 1966.Google Scholar
  50. Garfield, R.E., Yallampalli, C., Buhimschi, I., and Chwalisz, K.: Reversal of preeclampsia symptoms induced in rats by nitric oxide inhibition with L-arginine, steroid hormones and an endothelin antagonist. Presented at the Society for Gynecologic Investigation Meeting, 1994.Google Scholar
  51. Geier, G., Schuhmann, R., and Kraus, H.: Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten: autoradiographische Untersuchungen. Arch. Gynecol. 218: 31 - 37, 1975.Google Scholar
  52. Gerl, D., Eichhorn, H., Eichhorn, K.-H., and Franke, H.: Quantitative Messungen synzytialer Zellkernkonzentrationen der menschlichen Plazenta bei normalen und pathologischen Schwangerschaften. Zentralbl. Gynakol. 95: 263 - 266, 1973.PubMedGoogle Scholar
  53. Graham, C.H., and Lala, P.K.: Mechanism of control of trophoblast invasion in situ. J. Cell Physiol. 148: 228 - 234, 1991.PubMedCrossRefGoogle Scholar
  54. Habashi, S., Burton, G.J., and Steven, D.H.: Morphological study of the fetal vasculature of the human placenta: scanning electron microscopy of corrosion casts. Placenta 4: 41 - 56, 1983.PubMedCrossRefGoogle Scholar
  55. Hershman, J.M.: Hyperthyroidism induced by trophoblastic thyrotropin. Mayo Clin. Proc. 47: 913 - 918, 1972.Google Scholar
  56. Highison, G.J., and Tibbitts, F.D.: Ultrasonic microdissection of immature intermediate human placental villi as studied by scanning electron microscopy. Scanning Electron Microsc. 2: 679 - 685, 1986.Google Scholar
  57. Holmgren, L., Glaser, A., Pfeifer-Ohlsson, N.S., and Ohlsson, R.: Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113: 749 - 754, 1991.PubMedGoogle Scholar
  58. Hölzl, M., Lüthje, D., and Seck-Ebersbach, K.: Placentaveränderungen bei EPH-Gestose. Arch. Gynecol. 217: 315 - 334, 1974.Google Scholar
  59. Hörmann, G.: Lebenskurven normaler und entwicklungsfähiger Chorionzotten; Ergebnisse systematischer Zottenmessungen. Arch. Gynecol. 181: 29 - 43, 1951.Google Scholar
  60. Hörmann, G.: Ein Beitrag zur funktionellen Morphologie der menschlichen Placenta. Arch. Gynecol. 184: 109 - 123, 1953.Google Scholar
  61. Hörmann, G.: Versuch einer Systematik plazentarer Entwicklungsstörungen. Geburtshilfe Frauenheilkd. 18:345– 349, 1958a.Google Scholar
  62. Hörmann, G.: Zur Systematik einer Pathologie der menschlichen Placenta. Arch. Gynecol. 191: 297 - 344, 1958b.Google Scholar
  63. Hugentobler, W., Binkert, F., Haenel, A.F., and Sçhaetti, D.: Die Chorionzotten-(Plazenta-)Biopsie im II. und III. Trimenon: Neue Perspektiven der Pränataldiagnostik. Geburtshilfe Frauenheilkd. 47: 729 - 732, 1987.PubMedCrossRefGoogle Scholar
  64. Hunt, J.S.: Macrophages in human uteroplacental tissues: a Review. Am. J. Reprod. Immunol. 21: 119 - 122, 1989.PubMedGoogle Scholar
  65. Jackson, M.R., Mayhew, T.M., and Haas, J.D.: Morpho-metric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of newborn. Placenta 8: 487 - 495, 1987.PubMedCrossRefGoogle Scholar
  66. Jackson, M.R., Carney, E.W., Lye, S.J., and Ritchie, J.W.K.: Immunolocalisation of two angiogenic factors (PDECGF and VEGF) in human placental villi throughout gestation. Placenta 13: A27, 1992.CrossRefGoogle Scholar
  67. Jokhi, P., Chumbley, G., King, A., Gardner, L., and Loke, W.: Expression of the colony stimulating factor-1 receptor by cells at the uteroplacental interface. Placenta 13: A29, 1992.CrossRefGoogle Scholar
  68. Jones, C.J.P., Hartmann, M., Blaschitz, A., and Desoye, G.: Ultrastructural localization of insulin receptors in human placenta. Am. J. Reprod. Immunol. 30: 136 - 145, 1993.PubMedGoogle Scholar
  69. Kaneoka, T., Taguchi, S., Shimizu, H., and Shirakawa, K.: Prenatal diagnosis and treatment of intrauterine growth retardation. J. Perinat. Med. 11: 204 - 212, 1983.PubMedCrossRefGoogle Scholar
  70. Karimu, A.L., and Burton, G.J.: The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br. J. Obstet. Gynaecol. 101: 57 - 63, 1994.PubMedCrossRefGoogle Scholar
  71. Kaufmann, P.: Entwicklung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 13-50. Thieme Verlag, Stuttgart, 1981.Google Scholar
  72. Kaufmann, P.: Development and differentiation of the human placental villous tree. Bibl. Anat. 22: 29 - 39, 1982.PubMedGoogle Scholar
  73. Kaufmann, P.: Basic morphology of the fetal and maternal circuits in the human placenta. Contrib. Gynecol. Obstet. 13: 5 - 17, 1985.PubMedGoogle Scholar
  74. Kaufmann, P., and Davidoff, M.: The guinea pig placenta. Adv. Anat. Embryol. Cell Biol. 53: 1 - 90, 1977.Google Scholar
  75. Kaufmann, P., and Scheffen, I.: Placental development. In, Neonatal and Fetal Medicine—Physiology and Pathophysiology. Vol. I. R.A. Polin and W.W. Fox, eds., pp. 47-55. Saunders, Orlando, FL, 1992.Google Scholar
  76. Kaufmann, P., Schiebler, T.H., Ciobotaru, C., and Stark, J.: Enzymhistochemische Untersuchungen an reifen menschlichen Placentazotten. II. Zur Gliederung des Syncytiotrophoblasten. Histochemistry 40: 191 - 207, 1974.PubMedCrossRefGoogle Scholar
  77. Kaufmann, P., Gentzen, D.M., and Davidoff, M.: Die Ultrastruktur von Langhanszellen in pathologischen menschlichen Placenten. Arch. Gynecol. 222: 319 - 332, 1977a.Google Scholar
  78. Kaufmann, P., Stark, J., and Stegner, H.-E.: The villous stroma of the human placenta. I. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177: 105 - 121, 1977b.PubMedCrossRefGoogle Scholar
  79. Kaufmann, P., Sen, D.K., and Schweikhart, G.: Classification of human placental villi. I. Histology and scanning electron microscopy. Cell Tissue Res. 200: 409 - 423, 1979.PubMedCrossRefGoogle Scholar
  80. Kaufmann, P., Nagl, W., and Fuhrmann, B.: Die funktionelle Bedeutung der Langhanszellen der menschlichen Plazenta. Verh. Anat. Ges. 77: 435 - 436, 1983.Google Scholar
  81. Kaufmann, P., Bruns, U., Leiser, R., Luckhardt, M., and Winterhager, E.: The fetal vascularization of term human placental villi. II. Intermediate and terminal villi. Anat. Embryol. (Berl.) 173: 203 - 214, 1985.CrossRefGoogle Scholar
  82. Kaufmann, P., Luckhardt, M., Schweikhart, G., and Cantle, S.J.: Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8: 235 - 247, 1987.PubMedCrossRefGoogle Scholar
  83. Kaufmann, P., Luckhardt, M., and Leiser, R.: Three-dimensional representation of the fetal vessel system in the human placenta. Trophoblast Res. 3: 113 - 137, 1988.Google Scholar
  84. Kaufmann, P., Kohnen, G., and Kosanke, G.: Wechselwirkungen zwischen Plazentamorphologie und fetaler Sauerstoffversorgung. Versuch einer zellbiologischen Interpretation pathohistologischer und experimenteller Befunde. Gynakologe 26: 16 - 23, 1993.PubMedGoogle Scholar
  85. Kennedy, R.L., and Darne, J.: The role of hCG in regulation of the thyroid gland in normal and abnormal pregnancy. Obstet. Gynecol. 78: 298 - 307, 1991.PubMedGoogle Scholar
  86. King, B.F.: Ultrastructural differentiation of stromal and vascular components in early macaque placental villi. Am. J. Anat. 178: 30 - 44, 1987.PubMedCrossRefGoogle Scholar
  87. Kohnen, G.: Immunhistochemische Charakterisierung extravaskulärer kontraktiler Zellen in menschlichen Placentazotten. Medical thesis, Technical University of Aachen, 1994.Google Scholar
  88. Kohnen, G., Mironov, V., Demir, R., Castellucci, M., and Kaufmann, P.: Immunhistochemische Klassifizierung von Stammzotten in der menschlichen Plazenta. Anat. Anz. 174 (Suppl.): 127, 1992.Google Scholar
  89. Kohnen, G., Kosanke, G., Korr, H., and Kaufmann, P.: Comparison of various proliferation markers applied to human placental tissue. Placenta 14: A38, 1993.Google Scholar
  90. Kosanke, G., Castellucci, M., Kaufmann, P., and Mironov, V.A.: Branching patterns of human placental villous trees: perspectives of topological analysis. Placenta 14: 591 - 604, 1993.PubMedCrossRefGoogle Scholar
  91. Krantz, K.E., and Parker, J.C.: Contractile properties of the smooth muscle in the human placenta. Clin. Obstet. Gynecol. 93: 253 - 258, 1963.Google Scholar
  92. Kumar, R., and Chaudhuri, B.N.: Altered maternal thyroid function: fetal and neonatal development of rat. Indian J. Physiol. Pharmacol. 33: 233 - 238, 1989.Google Scholar
  93. Kurjak, A., and Pal, A.: The effect of gestanon on the fetal and uteroplacental blood flow. Acta Med. Jugosl. 40: 12 1131, 1986.Google Scholar
  94. Lehmann, W.D., Schuhmann, R., and Kraus, H.: Regionally different steroid biosynthesis within materno-fetal circulation units (placentones) of mature human placentas. J. Perinat. Med. 1: 198 - 204, 1973.PubMedCrossRefGoogle Scholar
  95. Leiser, R.: Microvascularisation der Ziegenplazenta dargestellt mit rasterelektronisch untersuchten Gefäßausgüssen. Schweiz. Arch. Tierheilkd. 129: 59 - 74, 1987.PubMedGoogle Scholar
  96. Leiser, R., Luckhardt, M., Kaufmann, P., Winterhager, E., and Bruns, U.: The fetal vascularisation of term human placental villi. I. Peripheral stem villi. Anat. Embryol. (Berl.) 173: 71 - 80, 1985.CrossRefGoogle Scholar
  97. Leiser, R., Kosanke, G., and Kaufmann, P.: Human placental vascularization. In, Placenta: Basic Research for Clinical Application. H. Soma, ed., pp. 32-45. Karger, Basel, 1991.Google Scholar
  98. Lemtis, H.: Über die Architektonik des Zottengefäß apparates der menschlichen Plazenta. Anat. Anz. 102: 106 - 133, 1955.PubMedGoogle Scholar
  99. Lemtis, H.: New insights into the maternal circulatory system of the human placenta. In, The Foetoplacental Unit. A. Pecile and D. Finzi, eds. Excerpta Medica, Amsterdam, 1969.Google Scholar
  100. Lysiak, J., Khoo, N., Conelly, I., Stettler-Stevenson, W., and Peeyush, L.: Role of transforming growth factor (TGF) and epidermal growth factor (EGF) on proliferation, invasion, and hCG production by normal and malignant trophoblast. Placenta 13: A41, 1992.CrossRefGoogle Scholar
  101. Macara, L., Kingdom, J.C.P., Hair, J., More, I.A.R., Lyall, F., Kohnen, G., Greer, I.A., and Kaufmann, P.: Placental terminal villi from pregnancies complicated by intrauterine growth retardation: immunohistochemical and ultrastructural aspects. ( 1994, submitted).Google Scholar
  102. Maruo, T., Matsuo, H., and Mochizuki, M.: Thyroid hormone as a biological amplifier of differentiated trophoblast function in early pregnancy. Acta Endocrinol. (Copenh.) 125: 58 - 66, 1991.Google Scholar
  103. Marzolf, G., Lobstein, J.F., Dillmann, J.C., Spizzo, M., Eberst, B., and Gandar, R.: Double blind comparison of the effects of Gestanon versus placebo in intra-uterine growth retardation. Presented at the 4th Asia Oceanic Congress on Perinatology, Tokyo, 1986.Google Scholar
  104. Matsuo, H., Maruo, T., Murata, K., and Mochizuki, M.: Human early placental trophoblasts produce an epidermal growth factor-like substance in synergy with thyroid hormone. Acta Endocrinol. (Copenh.) 128: 225 - 229, 1993.Google Scholar
  105. Moe, N.: Mitotic activity in the syncytiotrophoblast of the human chorionic villi. Am. J. Obstet. Gynecol. 110: 431, 1971.PubMedGoogle Scholar
  106. Moll, W.: Physiologie der maternen plazentaren Durchblutung. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 172-194. Thieme, Stuttgart, 1981.Google Scholar
  107. Montgomery, D., and Young, M.: The uptake of naturally occurring amino acids by the plasma membrane of the human placenta. Placenta 3: 13 - 20, 1982.PubMedCrossRefGoogle Scholar
  108. Mossman, H.W.: The rabbit placenta and the problem of placental transmission. Am. J. Anat. 37: 433 - 497, 1926.CrossRefGoogle Scholar
  109. Mossman, H.W.: The principal interchange vessels of the chorioallantoic placenta of mammals. In, Organogenesis. R.L. DeHann and H. Ursprung, eds., pp. 771-786. Holt, Rinehart & Winston, New York, 1965.Google Scholar
  110. Mühlhauser, J., Crescimanno, C., Kaufmann, P., Höfler, H., Zaccheo, D., and Castellucci, M.: Differentiation and proliferation patterns in human trophoblast revealed by cerbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41: 165 - 173, 1993.PubMedCrossRefGoogle Scholar
  111. Myers, R.E., and Panigel, M.: Experimental placental detachment in the rhesus monkey: changes in villous ultrastructure. J. Med. Primatol. 2: 170 - 189, 1973.PubMedGoogle Scholar
  112. Naeye, R.L., Maisels, J., Lorenz, R.P., and Botti, J.J.: The clinical significance of placental villous edema. Pediatrics 71: 588 - 594, 1983.PubMedGoogle Scholar
  113. Nikolov, S.D., and Schiebler, T.H.: Über das fetale Gefäßsystem der reifen menschlichen Plazenta. Z. Zellforsch. 139: 333 - 350, 1973.PubMedCrossRefGoogle Scholar
  114. Nikolov, S.D., and Schiebler, T.H.: Über Endothelzellen in Zottengefäßen der reifen menschlichen Plazenta. Acta Anat. (Basel) 110: 338 - 344, 1981.Google Scholar
  115. Ogawa, S., Leavy, J., Clauss, M., Koga, S., Shreeniwas, R., Joseph-Silverstein, J., Furie, M., and Stern, D.: Modulation of endothelial cell (EC) function in hypoxia: alterations in cell growth and the response to monocyte-derived mitogenic factors. J. Cell. Biochem. Suppl. 15F: 213, 1991.Google Scholar
  116. Neill, J.E.G.: Vascularizacao da placenta humana. Thesis, Universidade Nova de Lisboa, Portugal, 1983.Google Scholar
  117. Ong, P.J., and Burton, G.J.: Thinning of the placental villous membrane during maintenance in hypoxic organ culture: structural adaptation or syncytial degeneration ? Eur. J. Obstet. Gynecol. Reprod. Biol. 39: 103 - 110, 1991.PubMedCrossRefGoogle Scholar
  118. Panigel, M., and Myers, R.E.: The effect of fetectomy and ligature of the interplacental fetal vessels on the ultrastructure of placental villosities in Macaca mulatta. C. R. Acad. Sci. Hebd. Seances. Acad. Sci. D 272: 315 - 318, 1971.PubMedGoogle Scholar
  119. Panigel, M., and. Myers, R.E.: Histological and ultrastructural changes in rhesus monkey placenta following interruption of fetal placental circulation by fetectomy or interplacental umbilical vessel ligation. Acta Anat. (Basel) 81: 481 - 506, 1972.Google Scholar
  120. Panigel, M., and Pascaud, M.: Les orifices artériels entrée du sang maternel dans la chambre intervilleuse du placenta humain. Bull. Assoc. Anat. 142: 1287 - 1298, 1968.Google Scholar
  121. Papierowski, Z.: Effects of selected progestagens used for the protection of high-risk pregnancy on the clinical course, morphological changes and proliferative activity of the trophoblast. Ginekol. Pol. 52: 298 - 303, 1981.PubMedGoogle Scholar
  122. Paprocki, M.: Morphologie und Morphometrie der Zottengefäße der reifen menschlichen Plazenta nach vorzeitigem Blasensprung. Medical thesis, Technical University of Aachen, 1992.Google Scholar
  123. Penfold, P., Wootton, R., and Hytten, P.E.: Studies of a single placental cotyledon in vitro. III. The dimensions of the villous capillaries. Placenta 2: 161 - 168, 1981.PubMedCrossRefGoogle Scholar
  124. Pilz I., Schweikhart, G., and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. III. Morphometrische Untersuchungen bei Rh-Inkompatibilität. Arch. Gynecol. Obstet. 229: 137 - 154, 1980.Google Scholar
  125. Piotrowicz, B., Niebroj, T.K., and Sieron, G.: The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem. Cytochem. 7: 436 - 444, 1969.Google Scholar
  126. Prager, D., Weber, M.M., and Herman-Bonert, V.: Placental growth factors and releasing/inhibiting peptides. Semin. Reprod. Endocrinol. 10 (2): 83 - 94, 1992.CrossRefGoogle Scholar
  127. Ramsey, E.M., Corner, G.W., and Donner, M.W.: Serial and cineradioangiographic visualization of maternal circulation in the primate (hemochorial) placenta. Am. J. Obstet. Gynecol. 86: 213, 1963.PubMedGoogle Scholar
  128. Rao, C.V., Ramani, N., Chegini, N., Stadig, B.K., Carman, F.R., Jr., Woost, P.G., Schultz, G.S., and Cook, C.L.: Topography of human placental receptors for epidermal growth factor. J. Biol. Chem. 260: 1705 - 1710, 1985.PubMedGoogle Scholar
  129. Reshetnikova, O.S., Burton, G.J., and Milovanov, A.P.: The effects of hypobaric hypoxia on the terminal villi of the human placenta. J. Physiol. (Lond.) 459: 308P, 1993.Google Scholar
  130. Reynolds, L.P., Killilea, S.D., and Redmer, D.A.: Angiogenesis in the female reproductive system. FASEB J. 6: 886 - 892, 1992.PubMedGoogle Scholar
  131. Rhodin, J.A.G.: The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18: 18 1223, 1967.Google Scholar
  132. Rhodin, J.A.G.: Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J. Ultrastruct. Res. 25: 452 - 500, 1968.PubMedCrossRefGoogle Scholar
  133. Rifkin, D.B., and Moscatelli, D.: Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol. 109: 1 - 6, 1989.PubMedCrossRefGoogle Scholar
  134. Rossi, P., Karsenty, G., Roberts, A.B., Roche, N.S., Sporn, M.B., and De Crombrugghe, B.: A nuclear factor 1 binding site mediates the transscriptional activation of a type I collagen promoter by transforming growth factor-ß. Cell 52: 405 - 414, 1988.PubMedCrossRefGoogle Scholar
  135. Salvatore, C.A.: The placenta in acute toxemia. Am. J. Obstet. Gynecol. 102: 347 - 352, 1968.PubMedGoogle Scholar
  136. Scheffen, I., Kaufmann, P., Philippens, L., Leiser, R., Geisen, C., and Mottaghy, K.: Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia. In, Oxygen Transfer to Tissue, XII. J. Piiper, T.K. Goldstick, and D. Meyer, eds., pp. 779-790. Plenum Press, New York, 1990.Google Scholar
  137. Schiebler, T.H., and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 51-111, Thieme, Stuttgart, 1981.Google Scholar
  138. Schmid-Schönbein, H.: Conceptional proposition for a specific microcirculatory problem: maternal blood flow in hemochorial multivillous placentae as percolation of a porous medium. Trophoblast Res. 3: 17 - 38, 1988.Google Scholar
  139. Schmidt, J.A., Mizel, S.B., Cohen, D., and Green, I.: Interleukin 1: a potential regulator of fibroblast proliferation. J. Immunol. 128: 2177 - 2182, 1982.PubMedGoogle Scholar
  140. Schmon, B., Hartmann, M., Jones, C.J., and Desoye, G.: Insulin and glucose do not affect the glycogen content in isolated and cultured trophoblast cells of human term placenta. J. Clin. Endocrinol. Metab. 73: 888 - 893, 1991.PubMedCrossRefGoogle Scholar
  141. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomie. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 199-207. Thieme Verlag, Stuttgart, 1981.Google Scholar
  142. Schuhmann, R., and Wehler, V.: Histologische Unterschiede an Plazentazotten innerhalb der materno-fetalen Strömungseinheit: ein Beitrag zur funktionellen Morphologie der Plazenta. Arch. Gynecol. 210: 425 - 439, 1971.Google Scholar
  143. Schuhmann, R., Kraus, H., Borst, R., and Geier, G.: Regional unterschiedliche Enzymaktivität innerhalb der Placentone reifer menschlicher Placenten: histochemische und biochemische Untersuchungen. Arch. Gynecol. 220: 209 - 226, 1976.Google Scholar
  144. Schweikhart, G.: Morphologie des Zottenbaumes der menschlichen Plazenta—orthologische und pathologische Entwicklung und ihre klinische Relevanz. Thesis, Medical Faculty, University of Mainz, 1985.Google Scholar
  145. Schweikhart, G., and Kaufmann, P.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. I. Ultrastruktur des Syncytiotrophoblasten. Arch. Gynecol. 222: 213 - 230, 1977.Google Scholar
  146. Schweikhart, G., and Kaufmann, P.: Histologie und Morphometrie der Plazenta bei intrauteriner Mangelentwicklung des Feten. Arch. Gynecol. 235: 566 - 567, 1983.Google Scholar
  147. Schweikhart, G., and Kaufmann, P.: Endzottenmangel und klinische Relevanz. Gynäkol. Rundsch. 27(Suppl. 2 ): 147148, 1987.Google Scholar
  148. Scott, W.A., and Cohn, Z.A.: Secretory products of mononuclear phagocytes. In, Pathobiology of the Endothelial Cell. H.L. Nossel and H.J. Vogel, eds. Raven Press, New York, 1982.Google Scholar
  149. Sen, D.K., Kaufmann, P., and Schweikhart, G.: Classification of human placental villi. II. Morphometry. Cell Tissue Res. 200: 425 - 434, 1979.Google Scholar
  150. Shorter, S., Clover, L., and Starkey, P.: Evidence for both an autocrine and paracrine role for the colony-stimulating factors in regulating placental growth and development. Placenta 13: A58, 1992.CrossRefGoogle Scholar
  151. Shreeniwas, R., Ogawa, S., Cozzolino, F., Torcia, G., Braunstein, N., Butura, C., Brett, J., Lieberman, H.B., Furie, M.B., and Joseph-Silverstein, J.: Macrovascular and microvascular endothelium during long-term hypoxia: alterations in cell growth, monolayer permeability, and cell surface coagulant properties. J. Cell. Physiol. 146: 8 - 17, 1991.PubMedCrossRefGoogle Scholar
  152. Strauss, D.S.: Growth-stimulatory actions of insulin in vitro and in vivo. Endocr. Rev. 5: 356 - 369, 1984.CrossRefGoogle Scholar
  153. Takemura, R., and Werb, Z.: Secretory products of macrophages and their physiological functions. Am. J. Physiol. 246: C1–C9, 1984.PubMedGoogle Scholar
  154. Tedde, G., and Tedde-Piras, A.: Mitotic index of the Langhans cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat. (Basel) 100: 114 - 119, 1978.Google Scholar
  155. Thiriot, M., and Panigel, M.: Microcirculation: la micro-vascularisation des villosites placentaires humaines. C. R. Acad. Sci. [D] 287: 709 - 712, 1978.Google Scholar
  156. Thorpe Beeston, J.G., Nicolaides, K.H., Snijders, R.J., Felton, C.V., and McGregor, A.M.: Thyroid function in small for gestational age fetuses. Obstet. Gynecol. 77: 701 - 706, 1991.Google Scholar
  157. Tominaga, T., and Page, E.W.: Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol. 94: 679 - 691, 1966.PubMedGoogle Scholar
  158. Voigt, S., Kaufmann, P., and Schweikhart, G.: Zur Abgrenzung normaler, artefizieller und pathologischer Strukturen in reifen menschlichen Plazentazotten. II. Morphometrische Untersuchungen zum Einfluss des Fixationsmodus. Arch. Gynecol. 226: 347 - 362, 1978.PubMedCrossRefGoogle Scholar
  159. Wallenburg, H.C.S., Hutchinson, D.L., Schuler, H.M., Stolte, L.A.M., and Janssens, J.: The pathogenesis of placental infarction. II. An experimental study in the rhesus monkey. Am. J. Obstet. Gynecol. 116: 841 - 846, 1973.PubMedGoogle Scholar
  160. Werb, Z.: How the macrophage regulates its extracellular environment. Am. J. Anat. 166: 237 - 256, 1983.PubMedCrossRefGoogle Scholar
  161. Werner, C., and Schneiderhan, W.: Plazentamorphologie und Plazentafunktion in Abhängigkeit von der diabetischen Stoffwechselführung. Geburtshilfe Frauenheilkd. 32: 959966, 1972.Google Scholar
  162. Widmaier, G.: Zur Ultrastruktur menschlicher Placentazotten beim Diabetes mellitus. Arch. Gynecol. 208: 396409, 1970.Google Scholar
  163. Wigglesworth, J.S.: Vascular organization of the human placenta. Nature 216: 1120 - 1121, 1967.PubMedCrossRefGoogle Scholar
  164. Wilkin, P.: Pathologie du Placenta. Masson, Paris, 1965.Google Scholar
  165. Yallampalli, C., and Garfield, R E Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 169: 1316 - 1320, 1993.Google Scholar
  166. Zeek, P.M., and Assali, N.S.: Vascular changes in the decidua associated with eclamptogenic toxemia of pregnancy. Am. J. Clin. Pathol. 20: 1099 - 1109, 1950.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Peter Kaufmann
    • 2
  1. 1.University Medical CenterUniversity of California, San DiegoSan DiegoUSA
  2. 2.Institut für Anatomie der Medizinischen FakultätRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations