Nonvillous Parts of the Placenta

  • Kurt Benirschke
  • Peter Kaufmann

Abstract

The nonvillous parts of the placenta include the chorionic plate, cell islands, cell columns, placental septa, basal plate, marginal zone, membranes, and fibrinoid deposits in all parts of the organ. These parts comprise one-third to one-half of the placental volume. As they are not vascularized from both the maternal and fetal circulations, they do not participate in maternofetal exchange and are clinically seemingly irrelevant structures; hence they have been largely neglected for a long time.

Keywords

Basal Plate Decidual Cell Spiral Artery Extravillous Trophoblast Intervillous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Timimi, A., and Fox, H.: Immunohistochemical localization of follicle-stimulating hormone, luteinizing hormone, growth hormone, adrenocorticotrophic hormone and prolactin in the human placenta. Placenta 7: 163–172, 1986.CrossRefGoogle Scholar
  2. Al-Zuhair, A.G.H., Ibrahim, M.E.A., and Mughal, S.: Calcium deposition on the maternal surface of the human placenta: a scanning electron microscopic study. Arch. Gynecol. 234: 167–172, 1984.PubMedCrossRefGoogle Scholar
  3. Andersen, J.R., Borggaard, B., Schroeder, E., Olsen, E.B., Stimpel, H., and Nyholm, H.C.: The dependence of human decidual prolactin production and secretion on the osmotic environment in vitro. Acta Endocrinol. (Copenh.) 106: 405–410, 1984.Google Scholar
  4. Andersen, J.R., Borggaard, B., Olsen, E.B., Stimpel, H., Nyholm, H.C., and Schroeder, E.: Effect of ouabain and bumetanide on the basal and the osmolality-affected prolactin secretion from human decidual cells in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 23: 159–166, 1986.PubMedCrossRefGoogle Scholar
  5. Andersen, J.R., Borggaard, B., Olsen, E.B, Stimpel, H., Nyholm, H.C., and Schroeder, E.: Decidual prolactin content and secretion at term: correlations with the clinical data. Acta Obstet. Gynecol. Scand. 66: 591–596, 1987.CrossRefGoogle Scholar
  6. Angel, E., Davis, J.R., and Nagle, R.B.: Correspondence: decidual cells. Lab. Invest. 55: 120, 1986.PubMedGoogle Scholar
  7. Aplin, J.D.: Expression of integrin alpha 6 beta 4 in human trophoblast and its loss from extravillous cells. Placenta 14: 203–215, 1993.PubMedCrossRefGoogle Scholar
  8. Aplin, J.D., and Campbell, S.: An immunofluorescence study of extracellular matrix associated with cytotrophoblast of the chorion laeve. Placenta 6: 469–479, 1985.PubMedCrossRefGoogle Scholar
  9. Aplin, J.D., and Foden, L.J.: A cell spreading factor, abundant in human placenta, contains fibronectin and fibrinogen. J. Cell Sci. 58: 287–302, 1982.PubMedGoogle Scholar
  10. Arias-Stella, J.: Gestational endometrium. In, The Uterus. H.J. Norris, A.T. Hertig, and M.R. Abel, eds., pp. 183–212. Williams and Wilkins, Baltimore, 1973.Google Scholar
  11. Arnholdt, H., and Löhrs, U.: Proliferation and differentiation of Langhans’ cells. Placenta 10: 458, 1989.CrossRefGoogle Scholar
  12. Arnholdt, H., Meisel, F., Fandrey, K., and Löhrs, U.: Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch. B Cell Pathol. 60: 365–372, 1991.CrossRefGoogle Scholar
  13. Arnold, J.: Über den Schlussring reifer menschlicher Plazenten. Verh. Anat. Ges. 69: 303–306, 1975a.PubMedGoogle Scholar
  14. Arnold, J.: Über die Randzone der reifen menschlichen Plazenta. Inaugural Dissertation, Würzburg, 1975b.Google Scholar
  15. Arts, N.F.T.: Investigations on the vascular system of the placenta. Am. J. Obstet. Gynecol. 82: 147–166, 1961.PubMedGoogle Scholar
  16. Aufderheide E., and Ekblom, P.: Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J. Cell Biol. 107: 2341–2349, 1988.PubMedCrossRefGoogle Scholar
  17. Autio Harmainen, H., Hurskainen, T., Niskasaari, K., Hoyhtya, M., and Tryggvason, K.: Simultaneous expression of 70 kilodalton type IV collagenase and type IV collagen alpha 1 (IV) chain genes by cells of early human placenta and gestational endometrium. Lab. Invest. 67: 191–200, 1992.Google Scholar
  18. Avery, C.R., and Aterman, K.: Calcification of the basement-membrane of placental villi. J. Pathol. 103: 199–200, 1971.PubMedCrossRefGoogle Scholar
  19. Azab, I., Okamura, H., and Beer, A.: Decidual cell production of human placental fibrinoid. Obstet. Gynecol. 40: 186–193, 1972.PubMedGoogle Scholar
  20. Badarau, L., and Gavrilita, L.: Intervillous fibrin deposition, the Rohr, Nitabuch and Langhans striae. Am. J. Obstet. Gynecol. 98: 252–260, 1967.PubMedGoogle Scholar
  21. Badarau, L., Gavrilita, L., Stratan, E., and Calinca, N.: Étude histologique de la caduque au cours de la grossesse normale: le mode de pénétration du trophoblaste dans la plaque basale; le processus de placentation. Gynecol. Obstet. (Paris) 70: 273–290, 1971.Google Scholar
  22. Bagshawe, K., and Lawler, S.: The immunogenicity of the placenta and trophoblast. In, Immunobiology of Trophoblast. R.G. Edwards, C.W.S. Howe, and M.H. Johnson, eds., pp. 171–182. Cambridge University Press, London, 1975.Google Scholar
  23. Baker, B.L., Hook, J., and Severinghaus, A.E.: The cytological structure of the human chorionic villus and decidua parietalis. Am. J. Anat. 74: 291–325, 1944.CrossRefGoogle Scholar
  24. Bardawil, W.A., and Toy, B.L.: The natural history of choriocarcinoma: problems of immunity and spontaneous regression. Ann. N.Y. Acad. Sci. 80: 197–261, 1959.PubMedCrossRefGoogle Scholar
  25. Bargmann, W.: Über den Bildungsort der Choriongonadotropine und Plazentarsteroide. Geburtshilfe Frauenheilkd. 17: 865–875, 1957.PubMedGoogle Scholar
  26. Bautzmann, H., and Schröder, R.: Vergleichende Studien über Bau und Funktion des Amnions: Neue Befunde am menschlichen Amnion mit Einschluss seiner freien Bindegewebs-oder sog. Hofbauerzellen. Z. Anat. 119: 722, 1955.Google Scholar
  27. Beck, A.J., and Beck, F.: The origin of intra-arterial cells in the pregnant uterus of the macaque (Macaca mulatta). Anat. Rec. 158: 111–113, 1967.PubMedCrossRefGoogle Scholar
  28. Beck, J.S.: Time of appearance of human placental lactogen in the embryo. N. Engl. J. Med. 283: 189–190, 1970.PubMedCrossRefGoogle Scholar
  29. Beck, T., Schweikhart, G., and Stolz, E.: Immunohistochemical location of HPL, SP1 and ß-HCG in normal placentas of varying gestational age. Arch. Gynecol. 239: 63–74, 1986.PubMedCrossRefGoogle Scholar
  30. Becker, V.: Funktionelle Morphologie der Placenta. Arch. Gynecol. 198: 3–28, 1962.Google Scholar
  31. Becker, V.: Gefäße der Chorionplatte und Stammzotten. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 311–313. Thieme Verlag, Stuttgart, 1981.Google Scholar
  32. Becker, V., and Jipp, P.: Über die Trophoblastschale der menschlichen Plazenta. Geburtshilfe Frauenheilkd. 23: 466474, 1963.Google Scholar
  33. Bell, S.C.: Decidualization: regional differentiation and associated function. Oxford Rev. Reprod. Biol. 5: 220–271, 1983.Google Scholar
  34. Bell, S.C.: Decidualization and insulin-like growth factor (IGF) binding protein: implications for its role in stromal cell differentiation and the decidual cell in haemochorial placentation. Hum. Reprod. 4: 125–130, 1989.PubMedGoogle Scholar
  35. Bell, S.C., Patel, S.R., Jackson, J.A., and Waites, G.T.: Major secretory protein of human decidualized endometrium in pregnancy is an insulin-like growth factor binding protein. J. Endocrinol. 118: 317–328, 1988.PubMedCrossRefGoogle Scholar
  36. Bendon, R.W., and Ray, M.B.: The pathologic findings of the fetal membranes in very prolonged amniotic fluid leakage. Arch. Pathol. Lab. Med. 110: 47–50, 1986.PubMedGoogle Scholar
  37. Benirschke, K.: Examination of the placenta. Obstet. Gynecol. 18: 309–333, 1961.Google Scholar
  38. Benirschke, K., and Driscoll, S.G.: The Pathology of the Human Placenta. Springer-Verlag, New York, 1967.Google Scholar
  39. Berger, G., Verbaere, J., and Feroldi, J.: Placental site trophoblastic tumor of the uterus: an ultrastructural and immunohistochemical study. Ultrastruct. Pathol. 6: 319329, 1984.Google Scholar
  40. Bertolini, R., and Klinger, M.: Über deziduaähnliche Zellnester in der Chorionplatte von geburtsreifen menschlichen Plazenten. Zentralbl. Gynäkol. 17: 521–524, 1966.Google Scholar
  41. Bertolini, R., Reissig, D., and Schippel, K.: Elektronenmikrokopische Befunde an den Zellen in der Chorionplatte der reifen menschlichen Plazenta. Z. Mikrosk. Anat. Forsch. 80: 358–368, 1969.PubMedGoogle Scholar
  42. Bierings, M.B., Adriaansen, H.J., and Van Dijk, J.P.: The appearance of transferrin receptors on cultured human cytotrophoblast and in vitro-formed syncytiotrophoblast. Placenta 9: 387–396, 1988.PubMedCrossRefGoogle Scholar
  43. Bigazzi, M., Bruni, P., Nardi, E., Petrucci, F., Pollicino, G., Franchini, M., Scarselli, G., and Farnararo, M.: Human decidual relaxin. Ann. N. Y. Acad. Sci. 380: 87–99, 1982.PubMedCrossRefGoogle Scholar
  44. Billington, D.: Organization, ultrastructure and histochemistry of the placenta: immunological considerations. In, Immunobiology of Trophoblast. R.G. Edwards, C.W.S. Howe, and M.H. Johnson, eds. Cambridge University Press, Cambridge, 1975.Google Scholar
  45. Birkenfeld, A., Mordel, N., and Okon, E.: Direct demonstration of iron in a term placenta in a case of ß-thalassemia major. Am. J. Obstet. Gynecol. 160: 562–563, 1989.PubMedGoogle Scholar
  46. Bischof, P., and Martelli, M.: Current topic: proteolysis in the penetration phase of the implantation process. Placenta 13: 17–24, 1992.PubMedCrossRefGoogle Scholar
  47. Bischof, P., Friedli, E., Martelli, M., and Campana, A.: Expression of extracellular matrix-degrading metalloproteinases by cultured human cytotrophoblast cells: effects of cell adhesion and immunopurification. Am. J. Obstet. Gynecol. 165: 1791–1801, 1991.PubMedGoogle Scholar
  48. Bittencourt, A.L., and Sadigursky, M.: Decidual angiomatosis with abortion. Patologia (Mexico) 15: 45–47, 1977.Google Scholar
  49. Björkman, N.: On the fine structure of the porcine placental barrier. Acta Anat. (Basel) 62: 334–342, 1965a.Google Scholar
  50. Björkman, N.: The fine morphology of the area of foetal-maternal apposition in the equine placenta. Z. Zellforsch. 65: 285–289, 1965b.Google Scholar
  51. Björkman, N.: An Atlas of Placental Fine Structure. Baillière, London; Williams and Wilkins, Baltimore, 1970.Google Scholar
  52. Björkman, N., and Bloom, G.: On the fine structure of the foetal-maternal junction on the bovine placentome. Z. Zellforsch. 45: 649–659, 1957.PubMedGoogle Scholar
  53. Blankenship, T.N., Enders, A.C., and King, B.F.: Trophoblastic invasion and the development of uteroplacental arteries in the macaque: immunohistochemical localization of cytokeratins, desmin, type IV collagen, laminin, and fibronectin. Cell Tissue Res. 272: 227–236, 1993a.PubMedCrossRefGoogle Scholar
  54. Blankenship, T.N., Enders, A.C., and King, B.F.: Trophoblastic invasion and modification of uterine veins during placental development in macaques. Cell Tiss. Res. 274: 135–144, 1993b.Google Scholar
  55. Blithe, D.L., Richards, R.G., and Skarulis, M.C.: Free alpha molecules from pregnancy stimulate secretion of prolactin from human decidual cells: a novel function for free alpha in pregnancy. Endocrinology 129: 2257–2259, 1991.PubMedCrossRefGoogle Scholar
  56. Boe, F.: Studies on the human placenta. I. The cell islands in the young placenta. Acta Obstet. Gynecol. Scand. 46: 59 1603, 1967.Google Scholar
  57. Boeving, B.G.: Das Eindringen des Trophoblasten in das Uterusepithel. Klin. Wochenschr. 42: 467–475, 1964.PubMedCrossRefGoogle Scholar
  58. Bogaert, L.J.: Endometrial granulocytes in proliferative endometrium. Br. J. Obstet. Gynaecol. 82: 995–998, 1975.PubMedCrossRefGoogle Scholar
  59. Bohn, H.: The human fibrin-stabilizing factors. Mol. Cell. Biochem. 20: 67–75, 1978.PubMedCrossRefGoogle Scholar
  60. Bonashevskaia, T.I., Lamentova, T.G., Shmakov, G.S., Nikolaeva, E.G., and Suslova, V.M.: Structuro-functional changes in the placenta as a result of exposure to atmospheric pollutants. Arkh. Anat. Gistol. Embriol. 88: 72–76, 1985.PubMedGoogle Scholar
  61. Bonnar, J., and Sheppard, B.L.: Treatment of poor intrauterine fetal growth with heparin and dipyridamole. Minerva Med. 465–468, 1977.Google Scholar
  62. Bore11, U., Fernstroem, I., Ohlson, L., and Wiqvist, N.: Effect of uterine contractions on the uteroplacental blood flow at term. Am. J. Obstet. Gynecol. 93: 44–57, 1965.Google Scholar
  63. Borsi, L., Carnemolla, B., Castellani, P., Rossellini, C., Vecchio, D., Allemanni, G., Change, S.E., TaylorPapadimitriou, J., Pande H., and Zardi, L.: Monoclonal antibodies in the analysis of fibronectin isoforms generated by alternative splicing of mRNA precursors in normal and transformed human cells. J. Cell Biol. 104: 595–600, 1987.PubMedCrossRefGoogle Scholar
  64. Boume, G.L.: The Human Amnion and Chorion. Lloyd-Luke, London, 1962.Google Scholar
  65. Boyd, J.D.: Morphology and physiology of the utero-placental circulation. In, Gestation. C.A. Villee, ed., pp. 132–194, Macy. New York, 1956.Google Scholar
  66. Boyd, J.D., and Hamilton, W.J.: The giant cells of the pregnant human uterus. J. Obstet. Gynaecol. Br. Emp. 67: 208–218, 1960.PubMedCrossRefGoogle Scholar
  67. Boyd, J.D., and Hamilton, W.J.: Placental septa. Z. Zellforsch. 69: 613–634, 1966.PubMedCrossRefGoogle Scholar
  68. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heifer and Sons, Cambridge, 1970.Google Scholar
  69. Bradbury, S., Billington, W.D., and Kirby, D.R.S.: A histochemical and electron microscopical study of the mouse placenta. J.R. Microsc. Soc. 84: 199–211, 1965.CrossRefGoogle Scholar
  70. Bray, B.A.: Presence of fibronectin in basement membranes and acidic structural glycoproteins from human placenta and lung. Ann. N.Y. Acad. Sci. 312: 142–150, 1978.PubMedCrossRefGoogle Scholar
  71. Bret, A.-J., Legros, R., and Toyoda, S.: Les kystes placentaires. Press Md. 68: 1552–1555, 1960.Google Scholar
  72. Brettner, A.: Zum Verhalten der sekundären Wand der Utero-Plazentargefässe bei der decidualen Reaktion. Acta Anat. (Basel) 57: 367–376, 1964.Google Scholar
  73. Breus, C.: Das Tuberöse Subchoriale Hämatom der Decidua. Eine typische Form der Molenschwangerschaft. F. Deuticke, Leipzig, 1892.Google Scholar
  74. Briese, V., and Müller, H.: Fetomaternal signal transduction by growth factors. Zentralbi. Gynakol. 114: 219–223, 1992.Google Scholar
  75. Brosens, I.: A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J. Obstet. Gynaecol. Br. Commonw. 71: 222–230, 1964.PubMedCrossRefGoogle Scholar
  76. Brosens, I.: The utero-placental vessels at term—the distribution and extent of physiological changes. Trophoblast Res. 3: 61–68, 1988.Google Scholar
  77. Brosens, I., Robertson, W.B., and Dixon, H.G.: The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 93: 569–579, 1967.PubMedCrossRefGoogle Scholar
  78. Brosens, I., Robertson, W.B., and Dixon, H.G.: The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Ann. 1: 177–191, 1972.Google Scholar
  79. Brosens, I., Dixon, H.G., and Robertson, W.B.: Fetal growth retardation and the arteries of the placental bed. Br. J. Obstet. Gynaecol. 84: 656–663, 1977.PubMedGoogle Scholar
  80. Brown, H.L., Miller, J.M., Khawli, O., and Gabert, H.A.: Premature placental calcification in maternal cigarette smokers. Obstet. Gynecol. 71: 914–917, 1988.PubMedGoogle Scholar
  81. Bryant-Greenwood, G.D., Rees, M.C.P., and Turnbull, A.C.: Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J. Endocrinol. 114: 491–496, 1987.PubMedCrossRefGoogle Scholar
  82. Brzosko, W., Nowoslawski, A., and Pisarki, T.: Analiza immunohistochemiczna mas wloknikowatych w lozysku ludzkim. Ginekol. Polska 36: 121–130, 1965a.Google Scholar
  83. Brzosko, W., Nowoslawski, A., and Pisarski, I.: Immunohistochemical analysis of the fibrinoid masses in human placenta. Pol. Med. 5: 114–123, 1965b.Google Scholar
  84. Bühler, F.R.: Randbildungen der menschlichen Placenta. Acta Anat. (Basel) 59: 47–76, 1964.Google Scholar
  85. Bullen, B., and Bloxam, D.: Human placental trophoblast cultured on amnion basement membrane: a model for transport studies. In, Abstracts of the 11th Rochester Trophoblast Conference, p. 131, 1988.Google Scholar
  86. Bulmer, D.: The metrial gland and endometrial granulocytes. J. Anat. 137: 787–826, 1983.Google Scholar
  87. Bulmer, D., and Dickson, A.D.: The fibrinoid capsule of the rat placenta and the disappearance of the decidua. J. Anat. 95: 300–310, 1961.PubMedGoogle Scholar
  88. Bulmer, D., and Peel, S.: The demonstration of immunoglobulin in the metrial gland cells of the rat placenta. J. Reprod. Fertil. 49: 143–145, 1977.PubMedCrossRefGoogle Scholar
  89. Bulmer, D., Stewart, I., and Peel, S.: Endometrial granulocytes of the pregnant hamster. J. Anat. 136: 329–337, 1983.PubMedGoogle Scholar
  90. Bulmer, J.N., and Johnson, P.M.: Macrophage populations in the human placenta and amniochorion. Clin. Exp. Immunol. 57: 393–403, 1984.PubMedGoogle Scholar
  91. Bulmer, J.N., and Sunderland, C.A.: Bone-marrow origin of endometrial granulocytes in the early human placental bed. J. Reprod. Immunol. 5: 383–387, 1983.PubMedCrossRefGoogle Scholar
  92. Bulmer, J.N., and Sunderland, C.A.: Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology 52: 349–357, 1984.PubMedGoogle Scholar
  93. Bulmer, J.N., Wells, M., Bhabra, K., and Johnson, P.M.: Immunohistological characterization of endometrial gland epithelium and extravillous fetal trophoblast in third trimester human placental bed tissues. Br. J. Obstet. Gynaecol. 93: 823–832, 1986.PubMedCrossRefGoogle Scholar
  94. Bulmer, J.N., Johnson, P.M., Sasagawa, M., and Takeuchi, S.: Immunohistochemical studies of fetal trophoblast and maternal decidua in hydatidiform mole and choriocarcinoma. Placenta 9: 183–200, 1988a.PubMedCrossRefGoogle Scholar
  95. Bulmer, J.N., Morrison, L., and Smith, J.C.: Expression of class II MHC gene products by macrophages in human uteroplacental tissue. Immunology 63: 707–714, 1988b.PubMedGoogle Scholar
  96. Bulmer, J.N., Smith, J., Morrison, L., and Wells, M.: Maternal and fetal cellular relationships in the human placental basal plate. Placenta 9: 237–246, 1988c.PubMedCrossRefGoogle Scholar
  97. Bulmer, J.N., Thrower, S., and Wells, M.: Expression of epidermal growth factor receptor and transferrin receptor by human trophoblast populations. Am. J. Reprod. Immunol. 21: 87–93, 1989.PubMedGoogle Scholar
  98. Bumm, E.: Zur Kenntnis der Uteroplacentargefässe. Arch. Gynäkol. 37: 1–15, 1890.CrossRefGoogle Scholar
  99. Bunton, T.E.: Incidental lesions in nonhuman primate placentae. Vet. Pathol. 23: 431–438, 1986.PubMedCrossRefGoogle Scholar
  100. Burrows, T.D., King, A., and Loke, Y.W.: Expression of integrins by human trophoblast and differential adhesion to laminin or fibronectin. Hum. Reprod. 8: 475–484, 1993.PubMedGoogle Scholar
  101. Burstein, R., Frankel, S., Soule, S.D., and Blumenthal, H.T.: Ageing in the placenta: autoimmune theory of senescence. Am. J. Obstet. Gynecol. 116: 271–274, 1973.PubMedGoogle Scholar
  102. Busanny-Caspari, W.: Zur Morphogenese des Fibrinoids in Placenta und Decidua. Virchows Arch. 322: 452–460, 1952.PubMedCrossRefGoogle Scholar
  103. Busanny-Caspari, E.: Zur Morphologie des Fibrinoids in Placenta und Dezidua. Virchows Arch. [Pathol. Anat.] 322: 452–460, 1956.Google Scholar
  104. Busanny-Caspari, W.: Fibrin und Fibrinoid. Acta Histochem. 4: 304–313, 1957.PubMedGoogle Scholar
  105. Butterworth, B.H., Khong, T.Y., Loke, Y.W., and Robertson, W.B.: Human cytotrophoblast populations studied by monoclonal antibodies using single and double biotinavidin-peroxidase immunocytochemistry. J. Histochem. Cytochem. 33: 977–983, 1985.PubMedCrossRefGoogle Scholar
  106. Carnemolla, B., Borsi, L., Zardi, L., Owens, R.J., and Baralle, F.E.: Localization of the cellular-fibronectinspecific epitope recognized by the monoclonal antibody IST-9 using fusion proteins expressed in E. coli. FEBS Lett. 215: 269–273, 1987.CrossRefGoogle Scholar
  107. Carnemolla, B., Balza, E., Siri, A., Zardi, L., Nicotra, M.R., Bigotti, A., and Natali, P.G.: A tumor associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J. Cell Biol. 108: 1139–1148, 1989.PubMedCrossRefGoogle Scholar
  108. Carter, J.E., Vellios, F., and Huber, C.P.: Histologic classification and incidence of circulatory lesions of the human placenta, with a review of the literature. Am. J. Clin. Pathol. 40: 374–378, 1963.Google Scholar
  109. Casey, M.L., Delgadillo, M., Cox, K.A., Nisert, S., and MacDonald, P.C.: Inactivation of prostaglandins in human decidua vera (parietalis) tissue: substrate specificity of prostaglandin dehydrogenase. Am. J. Obstet. Gynecol. 160: 3–7, 1989.PubMedGoogle Scholar
  110. Castellucci, M., Kaufmann, P., and Bischof, P.: Extracellular matrix influences hormone and placental protein production by human chorionic villi. In, Abstracts of the 11th Rochester Trophoblast Conference, p. 49, 1988.Google Scholar
  111. Castellucci, M., Kaufmann, P., and Bischof, P.: Extracellular matrix influences hormone and protein production by human chorionic villi. Cell Tissue Res. 262: 135–142, 1990.PubMedCrossRefGoogle Scholar
  112. Castellucci, M., Classen Linke, I., Mühlhauser, J., Kaufmann, P., and Zardi, L.: The human placenta: a model for tenascin expression. Histochemistry 95: 449–458, 1991.PubMedCrossRefGoogle Scholar
  113. Castellucci, M., Crescimanno, C., Schröter, C.A., Kaufmann, P., and Mühlhauser, J.: Extravillous trophoblast: immunohistochemical localization of extracellular matrix molecules. In, Frontiers in Gynecologic and Obstetric Investigation. A.R. Genazzani, F. Petraglia, and A.D. Genazzani, eds., pp. 19–25. Parthenon, New York, 1993a. (p. 297 ).Google Scholar
  114. Castellucci, M., Crescimano, C., Mühlhauser, J., Frank, H.G., Kaufmann, P., and Zardi, L.: Expression of extracellular matrix molecules related to placental development. Placenta 14: A9, 1993b.CrossRefGoogle Scholar
  115. Chaouat, G., Kolb, J.P., and Wegmann, T.G.: The murine placenta as an immunological barrier between the mother and the fetus. Immunol. Rev. 75: 31–60, 1983.PubMedCrossRefGoogle Scholar
  116. Cheung, P.Y., Walton, J.C., Tai, H.H., Riley, S.C., and Challis, J.R.: Immunocytochemical distribution and localization of 15-hydroxyprostaglandin dehydrogenase in human fetal membranes, decidua, and placenta. Am. J. Obstet. Gynecol. 163: 1445–1449, 1990.PubMedGoogle Scholar
  117. Cheung, P.Y., Walton, J.C., Tai, H.H., Riley, S.C., and Challis, J.R.: Localization of 15-hydroxy prostaglandin dehydrogenase in human fetal membranes, decidua, and placenta during pregnancy. Gynecol. Obstet. Invest. 33: 142–146, 1992.PubMedCrossRefGoogle Scholar
  118. Chiquet-Ehrismann, R., Mackie, E.J., Pearson, C.A., and Sakakura, T.: Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47: 131–139, 1986.PubMedCrossRefGoogle Scholar
  119. Chung, Si: Comparative studies on tissue transglutaminase and factor XIII. Ann. N.Y. Acad. Sci. 202: 240–255, 1972.PubMedCrossRefGoogle Scholar
  120. Clewell, W.H., and Manchester, D.K.: Recurrent maternal floor infarction: a preventable cause of fetal death. Am. J. Obstet. Gynecol. 147: 346–347, 1983.PubMedGoogle Scholar
  121. Coleman, R.W., Marder, V.J., Salzman, E.W., and Hirsh, J.: Overview of hemostasis. In, Hemostasis and Thrombosis, 2nd ed. R.W. Coleman, J. Hirsh, V.J. Marder, and E.W. Salzman, eds., pp. 3–17. Lipincott, Philadelphia 1987.Google Scholar
  122. Coukos, G., Gafvels, M.E., Wisel, S., Ruelaz, E.A., Strickland, D.K., Strauss, J.F., and Coutifaris, C.: Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and the 39-kd receptor-associated protein in human trophoblasts. Am. J. Pathol. 144: 383–392, 1994.PubMedGoogle Scholar
  123. Currie, C.A., and Bagshawe, K.D.: The masking of antigens on trophoblast and cancer cells. Lancet 1: 708–710, 1967.PubMedCrossRefGoogle Scholar
  124. Dallenbach, F.D., and Dallenbach-Hellweg, G.: Immunohistologische Untersuchungen zur Lokalisation des Relaxins in menschlicher Placenta und Decidua. Virchows Arch. [Pathol. Anat.] 337: 301–316, 1964.Google Scholar
  125. Dallenbach-Hellweg, G.: Histopathology of the Endometrium. pp. 24–27. Springer-Verlag, Berlin, 1971.Google Scholar
  126. Dallenbach-Hellweg, G., and Nette, G.: Über Glykoproteideinschlüsse in den Trophoblastzellen der menschlichen Plazenta und die Frage ihres Zusammenhangs mit der Bildung von Gonadotropin. Z. Zellforsch. 61: 145–158, 1963a.PubMedCrossRefGoogle Scholar
  127. Dallenbach-Hellweg, G., and Nette, G.: Über Proteineinschlüsse in basalen Trophoblastzellen der reifen menschlichen Plazenta. Virchows Arch. [Pathol. Anat.] 336: 528–543, 1963b.Google Scholar
  128. Dallenbach-Hellweg, G., and Nette, G.: Morphological and histochemical observations on trophoblast and decidua of the basal plate of the human placenta at term. Am. J. Anat. 115: 309–326, 1964.PubMedCrossRefGoogle Scholar
  129. Dallenbach-Hellweg, G., and Sievers, S.: Die histologische Reaktion des Endometrium auf lokal applizierte Gestagene. Virchows Arch. [Pathol. Anat.] 368: 289–298, 1975.Google Scholar
  130. Daly, D.C., Maslar, I.A., and Riddick, D.H.: Prolactin production during in vitro decidualization of proliferative endometrium. Am. J. Obstet. Gynecol. 145: 672–678, 1983.PubMedGoogle Scholar
  131. Damjanov, I.: Editorial: Vesalius and Hunter were right: decidua is a membrane. Lab. Invest. 53: 597–598, 1985.PubMedGoogle Scholar
  132. Damsky, C.H., Fitzgerald, M.L., and Fisher, S.J.: Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clin. Invest. 89: 210–222, 1992.PubMedCrossRefGoogle Scholar
  133. Davies, B.R., Casanueva, E., and Arroyo, P.: Placentas of small-for-dates infants: a small controlled series from Mexico City, Mexico. Am. J. Obstet. Gynecol. 149: 73 1736, 1984.Google Scholar
  134. Daya, D., and Sabet, L.: The use of cytokeratin as a sensitive and reliable marker for trophoblastic tissue. Am. J. Clin. Pathol. 95: 137–141, 1991.PubMedGoogle Scholar
  135. De Bakker-Theunissen, O.J.G.B., Arts, N.F.T., and Mulder, G.H.: Fluid transport across human fetal membranes affected by human amniotic fluid prolactin: an in vitro study. Placenta 9: 533–545, 1988.CrossRefGoogle Scholar
  136. Debiasi, E., Damiani, N., and Capodacqua, R.: Contributo allo studio della circolazione utero-placentare nelle donna. Minerva Ginecol. 15: 539–545, 1963.PubMedGoogle Scholar
  137. Demir, R., and Erbengi, T.: The cells of the intercotyledonary septae in full-term placenta. In, Proceedings of the 8th European Congress of Electron Microscopy. Vol. 3. pp. 2017–2018, 1984.Google Scholar
  138. Dempsey, E.W., Wislocki, G.B., and Amoroso, E.C.: Electron microscopy of the pig’s placenta, with especial reference to the cell membranes of the endometrium and chorion. Am. J. Anat. 96: 65–102, 1955.PubMedCrossRefGoogle Scholar
  139. Dempsey, E.W., Lessey, R.A., and Luse, S.A.: Electron microscopic observations on fibrinoid and histiotroph in the junctional zone and villi of the human placenta. Am. J. Anat. 108: 463–484, 1970.CrossRefGoogle Scholar
  140. Denker, H.W.: The role of trophoblastic factors in implantation. In, Novel Aspects of Reproductive Physiology. C.H. Spilman and J.W. Wilks, eds., pp. 181–212. Spectrum, New York, 1978.Google Scholar
  141. Denker, H.-W.: Trophoblast-endometrial interactions at embryo implantation: a cell biological paradox. Trophoblast Res. 4: 1–27, 1990.Google Scholar
  142. Denker, H.-W., and Aplin, J.D. eds.: Trophoblast invasion and endometrial receptivity: novel aspects of the cell biology of embryo implantation. Trophoblast Res. 4:1–462, 1990.Google Scholar
  143. DeWolf, F., DeWolf-Peeters, C., and Brosens, I.: Ultrastructure of the spiral arteries in the human placental bed at the end of normal pregnancy. Am. J. Obstet. Gynecol. 117: 833–848, 1973.Google Scholar
  144. DeWolf, F., Brosens, I., and Renaer, M.: Fetal growth retardation and the maternal arterial supply of the human placenta in the absence of sustained hypertension. Br. J. Obstet. Gynaecol. 87: 678–685, 1980.CrossRefGoogle Scholar
  145. Dietl, J., Ruck, P., Horny, H.P., Handgretinger, R., Marzusch, K., Ruck, M., Kaiserling, E., Griesser, H., and Kabelitz, D.: The decidua of early human pregnancyimmunohistochemistry and function of immunocompetent cells. Gynecol. Obstet. Invest. 33: 197–204, 1992.PubMedCrossRefGoogle Scholar
  146. Dohrn, M.: Ein Beitrag zur mikroskopischen Anatomie der reifen menschlichen Eihüllen. Monatsschr. Geburtshilfe Frauenkr. 26: 114–127, 1865.Google Scholar
  147. Doolittle, R.F.: Fibrinogen and fibrin. In, The Plasma Proteins. 2nd Ed., Vol. 2. F.W. Putnam, ed., pp. 109–161. Academic Press, Orlando, FL, 1975.Google Scholar
  148. Douglas, G.C., and King, B.F.: Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J. Immunol. Methods 119: 259–268, 1989.PubMedCrossRefGoogle Scholar
  149. Douglas, G.C., and King, B.F.: Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J. Cell Sci. 96: 131–141, 1990a.PubMedGoogle Scholar
  150. Douglas, G.C., and King, B.F.: Isolation and morphologic differentiation in vitro of villous cytotrophoblast cells from rhesus monkey placenta. In Vitro Cell Dev. Biol. 26:754758, 1990b.Google Scholar
  151. Douglas, G.C., and King, B.F.: Colchicine inhibits human trophoblast differentiation in vitro. Placenta 14: 187–201, 1993.PubMedCrossRefGoogle Scholar
  152. Duan, J.S.: Production of granulocyte colony stimulating factor in decidual tissue and its significance in pregnancy. Osaka City Med. J. 36: 81–97, 1990.PubMedGoogle Scholar
  153. Duncan, D.A., and Mazur, M.T.: Trophoblastic tumors: ultrastructural comparison of choriocarcinoma and placental-site trophoblastic tumor. Hum. Pathol. 20: 370–381, 1989.PubMedCrossRefGoogle Scholar
  154. Durst-Zivkovic, B.: Endometrial granular cells in fetal membranes. Anat. Anz. 143: 258–261, 1978.PubMedGoogle Scholar
  155. Dvorak, H.F., Senger, D.R., and Dvorak, A.M.: Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev. 2: 41–73, 1983.PubMedCrossRefGoogle Scholar
  156. Earl, U., Wells, M., and Bulmer, J.N.: The expression of major histocompatibility complex antigens by trophoblast in ectopic tubal pregnancy. J. Reprod. Immunol. 8: 13–24, 1985.PubMedCrossRefGoogle Scholar
  157. Earl, U., Morrison, L., Gray, C., and Bulmer, J.N.: Proteinase and proteinase inhibitor localization in the human placenta. Int. J. Gynecol. Pathol. 8: 114–124, 1989.PubMedCrossRefGoogle Scholar
  158. Earl, U., Estlin, C., and Bulmer, J.N.: Fibronectin and laminin in the early human placenta. Placenta 11: 223–231, 1990.PubMedCrossRefGoogle Scholar
  159. Edwards, D., Jones, C.J.P., Sibley, C.P., Farmer, D.R., and Nelson, D.M.: Areas of syncytial denudation may provide routes for paracellular diffusion across the human placenta [abstract]. Placenta 12: 383, 1991.Google Scholar
  160. Ehrig, K., Leivo, I., Argraves, W.S., Ruoslahti, E., and Engvall, E.: Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proc. Natl. Acad. Sci. U.S.A. 87: 3264–3268, 1990.PubMedCrossRefGoogle Scholar
  161. Eidelman, S., Damsky, C.H., Wheelock, M.J., and Damjanov, I.: Expression of the cell-cell adhesion glycoprotein cell-CAM 120/80 in normal human tissues and tumors. Am. J. Pathol. 135: 101–110, 1989.PubMedGoogle Scholar
  162. Einbrodt, H.J., and Schmid, K.O.: Über abnorme Verkalkungen der menschlichen Placenta bei Maternitätstetanie. Arch. Gynecol. 200: 327–339, 1965.Google Scholar
  163. Einbrodt, H.J., Schiereck, F.W., and Kinny, H.: Über die Ablagerung von Blei in den Verkalkungen der menschlichen Placenta. Arch. Gynecol. 213: 303–306, 1973.Google Scholar
  164. Ellis, S.A., Sargent, I.L., Redman, C.W., and McMichael, A.J.: Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 59: 595–601, 1986.PubMedGoogle Scholar
  165. Ellis, S.A., Palmer, M.S., and McMichael, A.J.: Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. J. Immunol. 144: 73 1735, 1990.Google Scholar
  166. Emonard, H., Christiane, Y., Smet, M., Grimaud, J.A., and Foidart, J.M.: Type IV and interstitial collagenolytic activities in normal and malignant trophoblast cells are specifically regulated by the extracellular matrix. Invasion Metastasis 10: 170–177, 1990.PubMedGoogle Scholar
  167. Enders, A.C.: Fine structure of anchoring villi of the human placenta. Am. J. Anat. 122: 419–452, 1968.PubMedCrossRefGoogle Scholar
  168. Enders, A.C.: Current topic: structural responses of the primate endometrium to implantation. Placenta 12: 309325, 1991.Google Scholar
  169. Enders, A.C., and Schlafke, S.: Cytological aspects of trophoblast-uterine interaction in early implantation. Am. J. Anat. 125: 1–30, 1969.PubMedCrossRefGoogle Scholar
  170. Ermocilla, R., and Altshuler, G.: The origin of “X cells” of the human placenta and their possible relationship to intrauterine growth retardation: an enigma. Am. J. Obstet. Gynecol. 117: 1137–1140, 1973.PubMedGoogle Scholar
  171. Faller, T., and Ferenci, P.: Der Aubau der Placenta-Septen: Untersuchungen mit Hilfe der Quinacrinfluorescenzfärbung des Y-Chromatins. Z. Anat. Entwicklungsgesch. 142: 207217, 1973.Google Scholar
  172. Farmer, D.R., and Nelson, D.M.: A fibrin matrix modulates the proliferation, hormone secretion and morphologic differentiation of cultured human placental trophoblast. Placenta 13: 163–177, 1992.PubMedCrossRefGoogle Scholar
  173. Faulk, W.P.: Placental fibrin. Am. J. Reprod. Immunol. 19: 132–135, 1989.PubMedGoogle Scholar
  174. Faulk, P., Trenchev, P., Dorling, J., and Holborow, J.: Antigens on post-implantation placentae. In, Immunobiology of Trophoblast. R.G. Edwards, C.W.S. Howe, and M.H. Johnson, eds., pp. 113–130. Cambridge University Press, Cambridge, 1975.Google Scholar
  175. Fazleabas, A.T., Verhage, H.G., Waites, G., and Bell, S.C.: Characterization of an insulin-like growth factor binding protein, analogous to human pregnancy-associated secreted endometrial alpha 1-globulin, in decidua of the baboon (Papio anubis) placenta. Biol. Reprod. 40: 873–885, 1989.PubMedCrossRefGoogle Scholar
  176. Feinberg, R.F., and Kliman, H.J.: Tropho-uteronectin (TUN): a unique oncofetal fibronectin deposited in the extracellular matrix of the tropho-uterine junction and regulated in vitro by cultured human trophoblast cells. Trophoblast Res. 7: 167–181, 1993.Google Scholar
  177. Feinberg, R.F., Kao, L.C., Haimowitz, J.E., Queenan, J.T., Jr., Wun, T.C., Strauss, J.F., and Kliman, H.J.: Plasminogen activator inhibitor types 1 and 2 in human trophoblasts: PAI-1 is an immunocytochemical marker of invading trophoblasts. Lab. Invest. 61: 20–26, 1989.PubMedGoogle Scholar
  178. Feinberg, R.F., Kliman, H.J., and Cohen, A.W.: Pre-eclampsia, trisomy 13, and the placental bed. Obstet. Gynecol. 78: 505–508, 1991a.PubMedGoogle Scholar
  179. Feinberg, R.F., Kliman, H.J., and Lockwood, C.J.: Is oncofetal fibronectin a trophoblast glue for human implantation ? Am. J. Pathol. 138: 537–543, 1991b.PubMedGoogle Scholar
  180. Fisher, S., Rikover, M., and Naor, S.: Factor XIII deficiencyGoogle Scholar
  181. with severe haemorrhagic diathesis. Blood 28:34–39, 1966. Fisher, S.J., and Damsky, C.H.: Human cytotrophoblastGoogle Scholar
  182. invasion. Semin. Cell Biol. 4: 183–188, 1993.Google Scholar
  183. Fisher, S.J., Leitch, M.S., Kantor, M.S., Basbaum, C.B., and Kramer, R.H.: Degradation of extracellular matrix by the trophoblastic cells of first-trimester human placentas. J. Cell Biochem. 27: 31–41, 1985.PubMedCrossRefGoogle Scholar
  184. Fisher, S.J., Cui, T.Y., Zhang, L., Hartman, L., Grahl, K., Guo-Yang, Z., Tarpey, J., and Damsky, C.H.: Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J. Cell Biol. 109: 891–902, 1989.PubMedCrossRefGoogle Scholar
  185. Fisher, S.J., Librach, C., Zhou, Y., Dao, D., Kosten, K., Roth, I., Bass, K., and Damsky, C.H.: Regulation of human cytotrophoblast invasion. Placenta 13:A. 17, 1992.Google Scholar
  186. Fox, H.: White infarcts of the placenta. J. Obstet. Gynaecol. Br. Commonw. 70: 980–991, 1963.PubMedCrossRefGoogle Scholar
  187. Fox, H.: Calcification of the placenta. J. Obstet. Gynaecol. Br. Commonw. 71: 759–765, 1964.PubMedCrossRefGoogle Scholar
  188. Fox, H.: Perivillous fibrin deposition in the human placenta. Am. J. Obstet. Gynecol. 98: 245–251, 1967a.PubMedGoogle Scholar
  189. Fox, H.: The significance of placental infarction in perinatal morbidity and mortality. Biol. Neonate 11: 87–105, 1967b.CrossRefGoogle Scholar
  190. Fox, H.: Fibrinoid necrosis of placental villi. J. Obstet. Gynaecol. Br. Commonw. 75: 448–452, 1968.PubMedCrossRefGoogle Scholar
  191. Fox, H.: Effect of hypoxia on trophoblast in organ culture. Am. J. Obstet. Gynecol. 107: 1058–1064, 1970.PubMedGoogle Scholar
  192. Fox, H.: Pathology of the Placenta. Saunders, London, 1978.Google Scholar
  193. Frame, L.T., Wiley, L., and Rogol, A.D.: Indirect immunofluorescent localization of prolactin to the cytoplasm of decidua and trophoblast cells in human placental membranes at term. J. Clin. Endocrinol. Metab. 49: 435–437, 1979.PubMedCrossRefGoogle Scholar
  194. Frank, H.G., Malekzadeh, F., Kertschanska, S., Crescimanno, C., Castellucci, M., Lang, I., Desoye, G., and Kaufmann, P.: Immunohistochemistry of two different types of placental fibrinoid. Acta Anat. (Basel) 150: 55–68, 1994.Google Scholar
  195. Franken, H.: Beitrag zur Veranschaulichung von Struktur und Funktion der Plazenta. Zentralbl. Gynäkol. 76: 729–745, 1954.PubMedGoogle Scholar
  196. Freese, U.E.: The uteroplacental vascular relationship in the human. Am. J. Obstet. Gynecol. 101: 8–16, 1968.PubMedGoogle Scholar
  197. Freese, U.E., and Maciolek, B.J.: Plastoid injection studies of the uteroplacental vascular relationship in the human. Obstet. Gynecol. 33: 160–169, 1969.PubMedGoogle Scholar
  198. Fuchs, A.R., and Fuchs, F.: Endocrinology of human parturition: a review. Br. J. Obstet. Gynaecol. 91: 948–967, 1984.PubMedCrossRefGoogle Scholar
  199. Fujikura, T.: Placental calcification and maternal age. Am. J. Obstet. Gynecol. 87: 41–45, 1963a.PubMedGoogle Scholar
  200. Fujikura, T.: Placental calcification and seasonal difference. Am. J. Obstet. Gynecol. 87: 46–47, 1963b.PubMedGoogle Scholar
  201. Fukamatsu, Y., Tornita, K., and Fukuta, T.: Further evidence of prolactin production from human decidua and its transport across fetal membrane. Gynecol. Obstet. Invest. 17: 309–316, 1984.PubMedCrossRefGoogle Scholar
  202. Garel, J.-M., and Barlet, J.-P.: Calcitonin in the mother, fetus and newborn. Ann. Biol. Anim. Biochem. Biophys. 18: 53–68, 1978.CrossRefGoogle Scholar
  203. Geller, H.F.: Über die Bedeutung des subchorialen Fibrinstreifens in der menschlichen Plazenta. Arch. Gynecol. 192: 1–6, 1959.Google Scholar
  204. Genbacev, O., Papic, N., Cuperlovic, M., Vicovac, L., Vuckovic, M., and Miller, R.K.: First trimester chorionic villous explants in culture as a model to study the origin and characteristics of extravillous cytotrophoblast [abstract]. Placenta 12: 389, 1991.Google Scholar
  205. Genbacev, O., Schubach, S.A., and Miller, R.K.: Villous culture of first trimester human placenta—model to study extravillous trophoblast (EVT) differentiation. Placenta 13: 439–461, 1992.PubMedCrossRefGoogle Scholar
  206. Genbacev, O., DeMesey Jensen, K., Schubach Powlin, S., and Miller, R.K.: In vitro differentiation and ultrastructure of human extravillous trophoblast (EVT) cells. Placenta 14: 463–475, 1993a.PubMedCrossRefGoogle Scholar
  207. Genbacev, O., Gerdner, K., and Miller, R.K.: Human cytotrophoblastic cell islands from first trimester placentae—proliferative and functional activity in vitro. Placenta 14:A. 25, 1993b.Google Scholar
  208. Genbacev, O., White, T.E.K., Gavin, C.E., and Miller, R.K.: Human trophoblast cultures: models for implantation and peri-implantation toxicology. Reprod. Toxicol. 7: 7594, 1993c.CrossRefGoogle Scholar
  209. Gille, J., Börner, P., Reinecke, J., Krause, P.-H., and Deicher, H.: Über die Fibrinoidablagerungen in den Endzotten der menschlichen Placenta. Arch. Gynecol. 217: 263–271, 1974.Google Scholar
  210. Gladwell, P., Duncan, P., Barham, K., and Kenny, J.: Amnioscopy of late pregnancy with fetal membrane and decidual cytology. Acta Cytol. (Baltimore) 18: 333–337, 1974.Google Scholar
  211. Gleich, G.J., and Adolphson, C.R.: The eosinophilic leukocyte: structure and function. Adv. Immunol. 39: 177–253, 1986.PubMedCrossRefGoogle Scholar
  212. Glienke, W.: Zur Ultrastruktur der Septen der menschlichen Plazenta. Z. Mikrosk. Anat. Forsch. 88: 111–147, 1974.PubMedGoogle Scholar
  213. Globerson, A., Bauminger, S., Abel, L., and Peleg, S.: Decidual extracts suppress antibody response in vitro. Eur. J. Immunol. 6: 120–122, 1976.Google Scholar
  214. Golander, A., Hurley, T., Barrett, J., Handwerger, S.: Synthesis of prolactin by human decidua in vitro. J. Endocrinol. 82: 263–267, 1979.PubMedCrossRefGoogle Scholar
  215. Gosseye, S., and Fox, H.: An immunohistological comparison of the secretory capacity of villous and extravillous trophoblast in the human placenta. Placenta 5: 329–348, 1984.PubMedCrossRefGoogle Scholar
  216. Gossrau, R., Graf, R., Ruhnke, M., and Hanski, C.: Pro-teases in the human full-term placenta. Histochemistry 86: 405–413, 1987.PubMedCrossRefGoogle Scholar
  217. Grannum, P.A.T., Berkowitz, R.L., and Hobbins, J.C.: The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am. J. Obstet. Gynecol. 133: 915–922, 1979.PubMedGoogle Scholar
  218. Grosser, O.: Über Fibrin und Fibrinoid in der Placenta. Z. Anat. Entwicklungsgesch. 76: 304–314, 1925.CrossRefGoogle Scholar
  219. Grosser, O.: Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. Bergmann, Munich, 1927.Google Scholar
  220. Grünwald, P.: The lobular architecture of the human placenta. Bull. John Hopkins Hosp. 119: 172–190, 1966.Google Scholar
  221. Grünwald, P.: Fetal deprivation and placental insufficiency. Obstet. Gynecol. 37: 906–908, 1971.Google Scholar
  222. Grünwald, P.: Lobular structure of hemochorial primate placentas and its relation to maternal vessels. Am. J. Anat. 136: 133–151, 1973.CrossRefGoogle Scholar
  223. Gu, Y., Jayatilak, P.G., Parmer, T.G., Gauldie, J., Fey, G.H., and Gibori, G.: Alpha 2-macroglobulin expression in the mesometrial decidua and its regulation by decidual luteotropin and prolactin. Endocrinology 131: 1321–1328, 1992.PubMedCrossRefGoogle Scholar
  224. Gustavii, B.: Release of lysosomal acid phosphatase into the cytoplasm of decidual cells before the onset of labour in humans. Br. J. Obstet. Gynaecol. 82: 177–181, 1975.CrossRefGoogle Scholar
  225. Haig, D.: Genetic conflicts in human pregnancy. Q. Rev. Biol. 68: 495–532, 1993.PubMedCrossRefGoogle Scholar
  226. Haller, H., Radillo, O., Rukavina, D., Tedesco, F., Candussi, G., Petrovic, O., and Randic, L.: An immunohistochemical study of leucocytes in human endometrium, first and third trimester basal decidua. J. Reprod. Immunol. 23: 41–49, 1993.PubMedCrossRefGoogle Scholar
  227. Haller, U.: Beitrag zur Morphologie der UteroPlacentargefäße. Arch. Gynecol. 205: 185–202, 1968.Google Scholar
  228. Hamaguchi, M., Yamamoto, T., and Sugiyama, Y.: Production of prolactin by cultures of isolated cells from human first-trimester decidua. Obstet. Gynecol. 76: 783–787, 1990.PubMedCrossRefGoogle Scholar
  229. Hamilton, W.J., and Boyd, J.D.: Trophoblast in human uteroplacental arteries. Nature 212: 906–908, 1966.PubMedCrossRefGoogle Scholar
  230. Hamperl, H.: Über die endometrialen Granulozyten (endometriale Körnchenzellen). Klin. Wochenschr. 32: 665–668, 1954.PubMedCrossRefGoogle Scholar
  231. Hansell, D.J., Bryant Greenwood, G.D., and Greenwood, F.C.: Expression of the human relaxin H1 gene in the decidua, trophoblast, and prostate. J. Clin. Endocrinol. Metab. 72: 899–904, 1991.PubMedCrossRefGoogle Scholar
  232. Harman, C.R., Manning, F.A., Stearms, E., and Morrison, I.: The correlation of ultrasonic placental grading and fetal pulmonary maturation in five hundred sixty-three pregnancies. Am. J. Obstet. Gynecol. 143: 941–943, 1982.PubMedGoogle Scholar
  233. Harris, J.W.S., and Ramsey, E.M.: The morphology of human uteroplacental vasculature. Carnegie Inst. Contrib. Embryol. 38: 43–58, 1966.Google Scholar
  234. Hassler, O.: Placental calcifications. Am. J. Obstet. Gynecol. 103: 348–353, 1969.PubMedGoogle Scholar
  235. Healy, D.L., Muller, H.K., and Burger, H G • Immunofluorescence shows localisation of prolactin to human amnion. Nature 265: 642–643, 1977.PubMedCrossRefGoogle Scholar
  236. Hearn, S., Walton, J., and Chapman, W.: Evidence that fibronectin in human placenta is derived from intermediate trophoblasts. Mod. Pathol. 5: 64A, 1992.Google Scholar
  237. Hein, K.: Licht-und elektronenmikroskopische Untersuchungen an der Basalplatte der reifen menschlichen Plazenta. Z. Zellforsch. 122: 323–349, 1971.PubMedCrossRefGoogle Scholar
  238. Hellweg, G.: Über Auftreten und Verhalten der endometrialen Körnchenzellen im Verlauf der Schwangerschaft, im krankhaft veränderten Endometrium und außerhalb des Corpus Uteri. Virchows Arch. [Pathol. Anat.] 330: 658680, 1957.Google Scholar
  239. Hertig, A.T.: Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib. Embryol. Carnegie Inst. 25: 37–81, 1935.Google Scholar
  240. Hertig, A.T.: La nidation des oeufs humains fécondes normaux et anormaux. In, Les Fonctions de Nidation Uterine et Leurs Troubles. J. Ferin and M. Gaudefroy, eds., pp. 169–213. Masson, Paris, 1960.Google Scholar
  241. Hill, L.M., Breckle, R., Ragozzino, M.W., Wolfgram, K.R., and O’Brien, P.C.: Grade 3 placentation: incidence and neonatal outcome. Obstet. Gynecol. 61: 728–732, 1983.PubMedGoogle Scholar
  242. Hitschmann, J., and Lindenthal, O.T.: Der weisse Infarkt der Placenta. Arch. Gynäkol. 69: 587–628, 1903.CrossRefGoogle Scholar
  243. Hobbins, J.C., and Winsberg, F.: Ultrasonography in Obstetrics and Gynecology. Williams and Wilkins, Baltimore, 1977.Google Scholar
  244. Hofmann, G.E., Scott, R.T., Jr., Bergh, P.A., and Deligdisch, L.: Immunohistochemical localization of epidermal growth factor in human endometrium, decidua, and placenta. J. Clin. Endocrinol. Metab. 73: 882–887, 1991.PubMedCrossRefGoogle Scholar
  245. Hofmann, G.E., Drews, M.R., Scott, R.T., Jr., Navot, D., Heller, D., and Deligdisch, L.: Epidermal growth factor and its receptor in human implantation trophoblast: immunohistochemical evidence for autocrine/paracrine function. J. Clin. Endocrinol. Metab. 74: 981–988, 1992.PubMedCrossRefGoogle Scholar
  246. Hofmann, G.E., Glatstein, I., Schatz, F., Heller, D., and Deligdisch, L.: Immunohistochemical localization of urokinase-type plasminogen activator and the plasminogen activator inhibitors 1 and 2 in early human implantation sites. Am. J. Obstet. Gynecol. 170: 671–676, 1994.PubMedGoogle Scholar
  247. Hohn H.P., Boots, L.R., Denker, H.W., and Höök, M.: Differentiation of human trophoblast cells in vitro stimulated by extracellular matrix. Trophoblast Res. 7: 181–201, 1993.Google Scholar
  248. Hörmann, G.: Die Fibrinoidisierung des Chorionepithels als Konstruktionsprinzip der menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 164: 263–269, 1965.PubMedGoogle Scholar
  249. Hörmann, G.: Über die sogenannten Septen, Inseln, Zysten, Furchen and die Randzone der menschlichen Plazenta. Z. Geburtshilfe Gynäkol. 165: 125–134, 1966.Google Scholar
  250. Hoshina, M., Boothby, M., Hussa, R., Pattillo, R., Camel, H.M., and Boime, I.: Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta 6: 163–172, 1983.CrossRefGoogle Scholar
  251. Hoshina, M., Hussa, R., Pattillo, R., and Boime, I.: Cytologic distribution of chorionic gonadotropin subunit and placental lactogen messenger RNA in neoplasms derived from human placenta. J. Cell Biol. 97: 1200–1206, 1985.CrossRefGoogle Scholar
  252. Howorka, E., and Kapczynski, W.: Marginal circular haematoma disrupting the chorionic plate of the placenta. J. Obstet. Gynaecol. Br. Commonw. 78: 280–282, 1971.PubMedCrossRefGoogle Scholar
  253. Hsi, B.L., and Yeh, C.J.: Monoclonal antibody GB25 recognizes human villous trophoblasts. Am. J. Reprod. Immunol. Microbiol. 12: 1–3, 1986.PubMedGoogle Scholar
  254. Hsi, B.L., Yeh, C.J., Samson, M., and Fehlmann, M.: Monoclonal antibody GB36 raised against human trophoblast recognizes a novel epithelial antigen. Placenta 8: 209–217, 1987.PubMedCrossRefGoogle Scholar
  255. Huber, C.P., Carter, J.E., and Vellios, F.: Lesions of the circulatory system of the placenta: a study of 243 placentas with special reference to the developments of infarcts. Am. J. Obstet. Gynecol. 81: 560–572, 1961.PubMedGoogle Scholar
  256. Hui, K.Y., Haber, E., and Matsueda, G.R.: Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not to fibrinogen. Science 222: 1129–1132, 1983.PubMedCrossRefGoogle Scholar
  257. Hunt, J.S.: Current topic: The role of macrophages in the uterine response to pregnancy. Placenta 11: 467–475, 1990.PubMedCrossRefGoogle Scholar
  258. Hunt, J.S., Fishback, J.L., Chumbley, G., and Loke, Y.W.: Identification of class I MHC mRNA in human first trimester trophoblast cells by in situ hybridization. J. Immunol. 144: 4420–4425, 1990.PubMedGoogle Scholar
  259. Hunt, J.S., Hsi, B.L., King, C.R., and Fishback, J.L.: Detection of class I MHC mRNA in subpopulations of first trimester cytotrophoblast cells by in situ hybridization. J. Reprod. Immunol. 19: 315–323, 1991.PubMedCrossRefGoogle Scholar
  260. Hunziker, R.D., and Wegmann, T.G.: Placental Immunoregulation. Crit. Rev. Immunol. 613: 245–285, 1987.Google Scholar
  261. Hustin, J., and Schaaps, J.-P.: Echocardiographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am. J. Obstet. Gynecol. 157: 162–168, 1987.PubMedGoogle Scholar
  262. Hustin, J., and Schaaps, J.-P.: Anatomical studies of the utero-placental vascularization in the first trimester of pregnancy. Trophoblast Res. 3: 49–60, 1988.Google Scholar
  263. Ikkala, E., Myllylae, G., and Nevanlinna, H.R.: Transfusion therapy in factor XII (FSF) deficiency. Scand. J. Haematol. 1: 308–312, 1964.PubMedCrossRefGoogle Scholar
  264. Iklé, F.A.: Dissemination von Syncytiotrophoblastzellen im mütterlichen Blut während der Gravidität. Bull. Schweiz. Akad. Med. Wiss. 20: 63–72, 1964.Google Scholar
  265. Ikonicoff, L.K.: Histologie et histochimie de la substance fibrinoide au niveau des villositis placentaires humaines. Rev. Fr. Gynecol. 66: 139–146, 1971.Google Scholar
  266. Ishizaki, Y., and Belter, L.F.: Melanin deposition in the placenta as a result of skin lesions (dermatopathic melanosis of placenta). Am. J. Obstet. Gynecol. 79: 1074–1077, 1960.PubMedGoogle Scholar
  267. Iwanaga, S.: Ultrastructural observations on human endometrial stromal cells during the normal menstrual cycle—with special reference to so-called “predecidual cells.” Nippon Sanka Fujinka Gakkai Zasshi 35: 177–182, 1983.PubMedGoogle Scholar
  268. Jackson, G.M., Edwin, S.S., Varer, M.W., Casal, D., and Mitchell, M.D.: Regulation of fetal fibronectin production in human chorion cells. Am. J. Obstet. Gynecol. 169: 1431 1435, 1993.Google Scholar
  269. Javert, C.T.: Decidual bleeding in pregnancy. Ann. N.Y. Acad. Sci. 61: 700–712, 1955.PubMedCrossRefGoogle Scholar
  270. Jeacock, M.K., Scott, J., and Plester, J.A.: Calcium content of the human placenta. Am. J. Obstet. Gynecol. 87: 34–40, 1963.PubMedGoogle Scholar
  271. Johnson, P.M., and Faulk, W.P.: Immunological studies of human placenta: identification and distribution of proteins in immature chorionic villi. Immunology 34: 1027–1036, 1978.PubMedGoogle Scholar
  272. Kaiser, R.: Über Rückbildungsvorgaenge in der Dezidua während der Schwangerschaft. Arch. Gynecol. 192: 209220, 1960.Google Scholar
  273. Kanzaki, H., Crainie, M., Lin, H., Yui, J., Guilbert, L.J., Mori, T., and Wegmann, T.G.: The in situ expression of granulocyte-macrophage colony-stimulating factor (GMCSF) mRNA at the maternal-fetal interface. Growth Factors 5: 69–74, 1991.PubMedCrossRefGoogle Scholar
  274. Katz, V.L., Bowes, W.A., and Sierkh, A.E.: Maternal floor infarction of the placenta associated with elevated second trimester serum alpha-fetoprotein. Am. J. Perinatol. 4: 225228, 1987.Google Scholar
  275. Kaufman, H., and Adams, E.: Murexide, another approach to the histochemical staining of calcium. Lab. Invest. 6: 275–280, 1957.PubMedGoogle Scholar
  276. Kaufmann, P.: Entwicklung der Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds. Thieme, Stuttgart, 1981a.Google Scholar
  277. Kaufmann, P.: Fibrinoid. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds. Thieme, Stuttgart, 1981b.Google Scholar
  278. Kaufmann, P.: Basic morphology of the fetal and maternal circuits in the human placenta. Contrib. Gynecol. Obstet. 13: 5–17, 1985.PubMedGoogle Scholar
  279. Kaufmann, P., and Stark, J.: Die Basalplatte der reifen menschlichen Placenta. I. Semidünnschnitt-Histologie. Z. Anat. Entwicklungsgesch. 135: 1–19, 1971.CrossRefGoogle Scholar
  280. Kaufmann, P., and Stark, J.: Semidünnschnitt-zytochemische und immunautoradiographische Befunde zum Hormonstoffwechsel der reifen menschlichen Plazenta. Verh. Anat. Ges. 67: 245–249, 1973.Google Scholar
  281. Kaufmann, P., Schröder, H., and Leichtweiss, H.-P.: Fluid shift across the placenta. II. Fetomaternal transfer of horseradish peroxidase in the guinea pig. Placenta 3: 339348, 1982.Google Scholar
  282. Kaufmann, P., Luckhardt, T.M., and Elger, W.: The structure of the tupaia placenta. II. Ultrastructure. Anat. Embryol. (Berl.) 171: 211–221, 1985.CrossRefGoogle Scholar
  283. Kawagoe, K.: Immune reaction between maternal and fetal tissue at the nidatory site of tubal pregnancy. Nippon Sanka Fujinka Gakkai Zasshi 37: 2691–2696, 1985.PubMedGoogle Scholar
  284. Kawagoe, K., Kawana, T., and Sakamoto, S.: Ultrastructure of the nidatory site in tubal pregnancy. Acta Obstet. Gynaecol. Jpn. 33: 403–410, 1981.Google Scholar
  285. Kawano, T., Morimoto, K., and Uemura, Y.: Urokinase inhibitor in human placenta. Nature 217: 253–254, 1968.PubMedCrossRefGoogle Scholar
  286. Kazzi, G.M., Gross, T.L., and Sokol, R.J.: Fetal biparietal diameter and placental grade: predictors of intrauterine growth retardation. Obstet. Gynecol. 62: 755–759, 1983.PubMedGoogle Scholar
  287. Kearns, M., and Lala, P.K.: Life history of decidual cells: a review. Am. J. Reprod. Immunol. 3: 78–82, 1983.PubMedGoogle Scholar
  288. Keiffer, H.: Le placenta myometrial humain; le mechanisme de sa secretion, excretion et absorption. Arch. Biol. 38: 93108, 1928.Google Scholar
  289. Kephart, G.M., Andrade, Z.A., and Gleich, G.J.: Localization of eosinophil major basic protein onto eggs of Schistosoma mansoni in human pathologic tissue. Am. J. Pathol. 133: 389–396, 1988.PubMedGoogle Scholar
  290. Khan, H., Ishihara, O., Elder, M.G., and Sullivan, M.H.: A comparison of two populations of decidual cells by immunocytochemistry and prostaglandin production. Histochemistry 96: 149–152, 1991.PubMedCrossRefGoogle Scholar
  291. Khan, H., Ishihara, O., Sullivan, M.H., and Elder, M.G.: Changes in decidual stromal cell function associated with labour. Br. J. Obstet. Gynaecol. 99: 10–12, 1992.PubMedGoogle Scholar
  292. Khong, T.Y., DeWolf, F., Robertson, W.B., and Brosens, I.: Inadequate maternal vascular response to placentation in preeclampsia and intrauterine fetal growth retardation. Br. J. Obstet. Gynaecol. 93: 1049–1059, 1986a.PubMedCrossRefGoogle Scholar
  293. Khong, T.Y., Lane, E.B., and Robertson, W.B.: An immunocytochemical study of fetal cells at the maternal-placental interface using monoclfonal antibodies to keratins, vimentin and desmin. Cell Tissue Res. 246: 189–195, 1986b.PubMedCrossRefGoogle Scholar
  294. Khudr, G., Soma, H., and Benirschke, K.: Trophoblastic origin of the X-cell and the placental giant cell. Am. J. Obstet. Gynecol. 115: 530–533, 1973.PubMedGoogle Scholar
  295. Kim, C.K., and Benirschke, K.: Autoradiographic study of the “X-cells” in the human placenta. Am. J. Obstet. Gynecol. 109: 96–102, 1971.PubMedGoogle Scholar
  296. Kim, C.K., Altshuler, G.P., and Benirschke, K.: Karyotypic analysis of the X-cell in the human placenta. Obstet. Gynecol. 37: 72–82, 1971a.PubMedGoogle Scholar
  297. Kim, C.K., Naftolin, F., and Benirschke, K.: Immunohistochemical studies of the “X-cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Am. J. Obstet. Gynecol. 111: 672–676, 1971b.PubMedGoogle Scholar
  298. King, A., and Loke, Y.W.: Differential expression of bloodgroup-related carbohydrate antigens by trophoblast sub-populations. Placenta 9: 513–521, 1988.PubMedCrossRefGoogle Scholar
  299. King, A., and Loke, Y.W.: Uterine large granular lymphocytes: a possible role in embryo implantation ? Am. J. Obstet. Gynecol. 162: 308–310, 1990.PubMedGoogle Scholar
  300. King, A., and Loke, Y.W.: On the nature and function of human uterine granular lymphocytes. Immunol. Today 12: 432–435, 1991.PubMedCrossRefGoogle Scholar
  301. King, A., Birkby, C., and Loke, Y.W.: Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell. Immunol. 118: 337344, 1989.Google Scholar
  302. King, A., Kalra, P., and Loke, Y.W.: Human trophoblast cell resistance to decidual NK lysis is due to lack of NK target structure. Cell. Immunol. 127: 230–237, 1990.PubMedCrossRefGoogle Scholar
  303. King, B.F., and Blankenship, T.N.: Expression of proliferating cell nuclear antigen (PCNA) in developing macaque placentas. Placenta 14:A. 36, 1993.Google Scholar
  304. Kirby, D.R.S., Billington, W.D., Bradbury, S., and Goldstein, D.J.: Antigen barrier of mouse placenta. Nature 204: 548–549, 1964.PubMedCrossRefGoogle Scholar
  305. Kirkinen, P., and Jouppila, P.: Intrauterine membranous cyst: a report of antenatal diagnosis and obstetric aspects in two cases. Obstet. Gynecol. 67: 26S - 30S, 1986.PubMedCrossRefGoogle Scholar
  306. Kisalus, L.L., and Herr, J.C.: Immunocytochemical localization of heparan sulfate proteoglycan in human decidual cell secretory bodies and placental fibrinoid. Biol. Reprod. 39: 419–430, 1988.PubMedCrossRefGoogle Scholar
  307. Kisalus, L.L., Herr, J.C., and Little, C.D.: Immunolocalization of extracellular matrix proteins and collagen synthesis in first trimester human decidua. Anat. Rec. 218: 402–415, 1987.PubMedCrossRefGoogle Scholar
  308. Klein, G.: Makroskopisches Verhalten der UteroPlacentargefässe. In, Die menschliche Placenta. Beiträge zur normalen und pathologischen Anatomie derselben. Hofmeier, ed., pp. 72–87. Bergmann, Wiesbaden, 1890.Google Scholar
  309. Kliman, H.J., and Feinberg, R.F.: Human trophoblastextracellular matrix (ECM) interactions in vitro: ECM thickness modulates morphology and proteolytic activity. Proc. Natl. Acad. Sci. U.S.A. 87: 3057–3061, 1990.PubMedCrossRefGoogle Scholar
  310. Kliman, H.J., Nestler, J.E., Sermasi, E., Sanger, J.M., and Strauss, J.F., III: Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118: 1567–1582, 1985.CrossRefGoogle Scholar
  311. Kliman, H.J., Feinman, M.A., and Strauss, J.F., III: Differentiation of human cytotrophoblasts into syncytiotrophoblasts in culture. Trophoblast Res. 2: 407–421, 1987.Google Scholar
  312. Kliman, H.J., Feinberg, R.F., and Haimowitz, J.E.: Human trophoblast-endometrial interactions in an in vitro suspension culture system. Placenta 11: 349–367, 1990.PubMedCrossRefGoogle Scholar
  313. Klinger, H.P.: The sex chromatin in fetal and maternal portions of the human placenta. Acta Anat. (Basel) 30: 371–397, 1957.Google Scholar
  314. Klinger, H.P., and Ludwig, K.S.: Sind die Septen und die grosszelligen Inseln der Placenta aus mütterlichem oder kindlichem Gewebe aufgebaut? Z. Anat. Entwicklungsgesch. 120: 95–100, 1957.CrossRefGoogle Scholar
  315. Klopper, H.: The new placental proteins. Placenta 1: 77–89, 1980.PubMedCrossRefGoogle Scholar
  316. Kölliker, A.: Entwicklungsgeschichte des Menschen und der höheren Thiere. 1st Ed. Engelmann, Leipzig, 1861.Google Scholar
  317. Kölliker, A.: Entwicklungsgeschichte des Menschen und der höheren Thiere. 2nd Ed. Engelmann, Leipzig, 1879.CrossRefGoogle Scholar
  318. Kohnen, G., Kosanke, G., Korr, H., and Kaufmann, P.: Comparison of various proliferation markers applied to human placental tissue. Placenta 14: A38, 1993.Google Scholar
  319. Korhonen, M., Ylanne, J., Laitinen, L., Cooper, H.M., Quaranta, V., and Virtanen, I.: Distribution of the alpha 1-alpha 6 integrin subunits in human developing and term placenta. Lab. Invest. 65: 347–356, 1991.PubMedGoogle Scholar
  320. Kosanke, G.: Methodological studies of proliferation markers applied to human placental villi. Biology doctoral thesis, Sciences Faculty, Technical University of Aachen, 1994.Google Scholar
  321. Kottsova, N.A., Bystrova, O.A., Susloparov, L.A., and Mikhailov, V.M.: Changes in the cellular composition of the deciduous membrane in physiologic pregnancy and late toxicosis. Arkh. Anat. Gistol. Embriol. 97: 76–82, 1989.PubMedGoogle Scholar
  322. Krafft, M.-L.: Über den Halte-und Verspannungsapparat der plazentaren Randzone und der Eihäute. (Nach graphischen Rekonstruktionen.) Inaugural dissertation, Berlin, 1973.Google Scholar
  323. Kratzsch, E., and Grygiel, I.-H.: Über das Vorkommen eines spezifischen Enzyms der Glucuronsäurebildung im menschlichen Amnion. Z. Zellforsch. 123: 566–571, 1972.PubMedCrossRefGoogle Scholar
  324. Kretschmann, H.-J.: Über Feinstruktur des subchorialen Placentarfibrins im Vergleich mit der des Blutfibrins. I. Orthoskopische Analyse. Acta Anat. (Basel) 66: 339–364, 1967a.Google Scholar
  325. Kretschmann, H.-J.: Über die Feinstruktur des subchorialen Placentarfibrins im Vergleich mit der des Blutfibrins. II. Experimentelle Studie Über Veränderungen der Feinstruktur des Blutfibrins. Acta Anat. (Basel) 66: 494503, 1967b.Google Scholar
  326. Krönicher, W.D.: Ein Beitrag zur Genese der Inseln in der menschlichen Placenta. Z. Mikrosk. Anat. Forsch. 89: 777803, 1975.Google Scholar
  327. Krohn, K., Ljungqvist, A., and Robertson, B.: Trophoblastic and subtrophoblastic mineral salt deposition in hydramnios. Acta Pathol. Microbiol. Scand. 69: 514–520. 1967.CrossRefGoogle Scholar
  328. Kubli, F.: Die chronische Placentarinsuffizienz. Gynakologe 1: 53–60, 1968.Google Scholar
  329. Kubota, T., Kamada, S., Hirata, Y., Eguchi, S., Imai, T., Marumo, F., and Aso, T.: Synthesis and release of endothelin-1 by human decidual cells. J. Clin. Endocrinol. Metab. 75: 1230–1234, 1992.PubMedCrossRefGoogle Scholar
  330. Kühler, W.: Die Deciduaverteilung in der menschlichen Placenta. Inaugural dissertation, Wesel, pp. 1–38, 1890. Kunicki, T.J., Nugent, D.J., Staats, S.J., Orchekowski, R.P., Wayner E.A., and Carter W.G.: The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet la-IIa complex. J. Biol. Chem. 263: 4516–4519, 1988.Google Scholar
  331. Kurman, R.J., Main, C.S., and Chen, H.C.: Intermediate trophoblast: a distinctive form of trophoblast with specific morphological, biochemical and functional features. Placenta 5: 349–369, 1984a.PubMedCrossRefGoogle Scholar
  332. Kurman, R.J., Young, R.H., Norris, H.J., Main, C.S., Lawrence, W.D., and Sculley, R.E.: Immunocytochemical localization of placental lactogen and chorionic gonadotropin in the normal placenta and trophoblastic tumors, with emphasis on intermediate trophoblast and the placental site trophoblastic tumor. Int. J. Gynecol. Pathol. 3: 101121, 1984b.Google Scholar
  333. Kyodo, Y., Kobayashi, T., and Terao, T.: Studies on the immunohistochemical localization of coagulation fibrinolysis factors in the placenta, especially of placental plasminogen activator (PPA). Nippon Sanka Fujinka Gakkai Zasshi 38: 10–16, 1986.PubMedGoogle Scholar
  334. Ladines Llave, C.A., Maruo, T., Manalo, A.M., and Mochizuki, M.: Decreased expression of epidermal growth factor and its receptor in the malignant transformation of trophoblasts. Cancer 71: 4118–4123, 1993.CrossRefGoogle Scholar
  335. Lala, P.K., Kearns, M., and Colavincenzo, V.: Cells of the fetomaternal interface: their role in the maintenance of viviparous pregnancy. Am. J. Anat. 170: 501–517, 1984.PubMedCrossRefGoogle Scholar
  336. Lala, P.K., Kearns, M., and Pahar, R.S.: Immunobiology of the decidual tissue: the maternal component of the fetomaternal interface. In, Immunoregulation and Fetal Survival. T. Gill and T.G. Wegmann, eds. Oxford University Press, New York, 1985.Google Scholar
  337. Lang, I., Hartmann, M., Blaschitz, A., Dohr, G., Skofitsch, G., and Desoye, G.: Immunohistochemical evidence for the heterogeneity of maternal and fetal vascular endothelial cells in human full-term placenta. Cell Tissue Res. 274: 21 1218, 1993.Google Scholar
  338. Lang, I., Hartmann, M., Blaschitz, A., Dohr, G., Kaufmann, P., Frank, H.G., Hahn, T., Skofitsch, G., and Desoye, G.: Differential lectin binding to the fibrinoid of human full term placenta: correlation with a fibrin antibody and the PAF-Halmi method. Acta Anat. (Basel) 1994 (in press).Google Scholar
  339. Langhans, T.: Untersuchungen über die menschliche Placenta. Arch. Anat. Physiol., Anat. Abt. 188–267, 1877.Google Scholar
  340. Lapan, B., and Friedman, M.M.: Tissue enzymes in gestation: comparative activities in the placenta and fetal membranes. Am. J. Obstet. Gynecol. 93: 1157–1163, 1965.PubMedGoogle Scholar
  341. Larsen, J.F., and Knoth, M.: Ultrastructure of the anchoring villi and trophoblastic shell in the second week of placentation. Acta Obstet. Gynecol. Scand. 50: 117–128, 1971.CrossRefGoogle Scholar
  342. Larsen, L.G., Theilade, K., Skibsted, L., and Jacobsen, G.K.: Malignant placental site trophoblastic tumor: a case report and a review of the literature. APMIS Suppl. 23: 138–145, 1991.PubMedGoogle Scholar
  343. Latta, J.S., and Beber, C.R.: The differentiation of a special form of trophoblast in the human placenta. Am. J. Obstet. Gynecol. 74: 105–110, 1957.PubMedGoogle Scholar
  344. Lawn, A.M., Wilson, E.W., and Finn, C.A.: The ultra-structure of human decidual and predecidual cells. J. Reprod. Fertil. 26: 85–90, 1971.PubMedCrossRefGoogle Scholar
  345. Leivo, I., Laurila, P., Wahlstrom, T., and Engvall, E.: Expression of merosin, a tissue-specific basement membrane protein, in the intermediate trophoblast cells of choriocarcinoma and placenta. Lab. Invest. 60: 783–790, 1989.PubMedGoogle Scholar
  346. Librach, C.L., Werb, Z., Fitzgerald, M.L., Chiu, K., Corwin, N.M., Esteves, R.A., Grobelny, D., Galardy, R., Damsky, C.H., and Fisher, S.J.: 92-kD Type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol. 113: 437449, 1991.Google Scholar
  347. Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G.: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336, 1991.PubMedCrossRefGoogle Scholar
  348. Linthwaite, R. F.: Subchorial hematoma mole (Breus’ mole). J.A.M.A. 186: 867–870, 1963.PubMedCrossRefGoogle Scholar
  349. Logothetou Relia, H., Kotoulas, I.G., Nesland, J.M., Kipiotis, D., and Abazis, D.: Early human trophoblast cell cultures: a morphological and immunocytochemical study. Histol. Histopathol. 4: 367–374, 1989.Google Scholar
  350. Loke, Y.W.: Trophoblast antigen expression. Curr. Opin. Immunol. 1: 1131–1134, 1989.PubMedCrossRefGoogle Scholar
  351. Loke, Y.W.: Experimenting with human extravillous trophoblast: a personal view. Am. J. Reprod. Immunol. 24: 22–28, 1990.PubMedGoogle Scholar
  352. Loke, Y.W., and Day, S.: Monoclonal antibody to human cytotrophoblast. Am. J. Reprod. Immunol. 5: 106–108, 1984.PubMedGoogle Scholar
  353. Loke, Y.W., and King, A.: Recent developments in the human maternal-fetal immune interaction. Curr. Opin. Immunol. 3: 762–766, 1991.PubMedCrossRefGoogle Scholar
  354. Loke, Y.W., Butterworth, B.H., Margetts, J.J., and Burland, K.: Identification of cytotrophoblast colonies in cultures of human placental cells using monoclonal antibodies. Placenta 7: 221–231, 1986.PubMedCrossRefGoogle Scholar
  355. Loke, Y.W., and Burland, K.: Human trophoblast cells cultured in modified medium and supported by extracellular matrix. Placenta 9: 173–182, 1988.PubMedCrossRefGoogle Scholar
  356. Loke, Y.W., Gardner, L., and Grabowska, A.: Isolation of human extravillous trophoblast cells by attachment to laminin-coated magnetic beads. Placenta 10: 407–415, 1989a.PubMedCrossRefGoogle Scholar
  357. Loke, Y.W., Gardner, L., Burland, K., and King, A.: Laminin in human trophoblast—decidua interaction. Hum. Reprod. 4: 457–463, 1989b.PubMedGoogle Scholar
  358. Loke, Y.W., Hsi, B.L., Bulmer, J.N., Grivaux, C., Hawley, S., Gardner, L., King, A., and Carter, N.P.: Evaluation of a monoclonal antibody, BC-1, which identifies an antigen expressed on the surface membrane of human extravillous trophoblast. Am. J. Reprod. Immunol. 27: 77–81, 1992a.PubMedGoogle Scholar
  359. Loke, Y.W., King, A., Gardner, L., and Carter, N.P.: Evidence for the expression of granulocyte-macrophage colony-stimulating factor receptors by human first trimester extravillous trophoblast and its response to this cytokine. J. Reprod. Immunol. 22: 33–45, 1992b.PubMedCrossRefGoogle Scholar
  360. Luckett, W.P.: Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152: 59–97, 1978.PubMedCrossRefGoogle Scholar
  361. Ludwig, K.S.: Die Rolle des Fibrins bei der Bildung der menschlichen Placenta. Acta Anat. (Basel) 38: 323–331, 1959.Google Scholar
  362. Ludwig, K.S.: Zur Feinstruktur der materno-fetalen Verbindung im Plazentom des Schafes (Ovis aries L.). Experientia 18: 212, 1962.PubMedCrossRefGoogle Scholar
  363. Ludwig, H., and Metzger, H.: Das uterine Placentarbett post partum im Rasterelektronenmikroskop, zugleich ein Beitrag zur Frage der extravasalen Fibrinbildung. Arch. Gynecol. 210: 251–266, 1971.Google Scholar
  364. Lysiak, J., Khoo, N., Conelly, I., Stettler-Stevenson, W., and Peeyush, L.: Role of transforming growth factor (TGF) a and epidermal growth factor (EGF) on proliferation, invasion, and hCG production by normal and malignant trophoblast. Placenta 13: A41, 1992.CrossRefGoogle Scholar
  365. Maddox, D.E., Butterfield, J.H., Ackerman, S.J., Coulam, C.B., and Gleich, G.J.: Elevated serum levels in human pregnancy of a molecule immunochemically similar to eosinophil granule major basic protein. J. Exp. Med. 158: 1211–1226, 1983.PubMedCrossRefGoogle Scholar
  366. Maddox, D.E., Kephart, G.M., Coulam, C.B., Butterfield, J.H., Benirschke, K., and Gleich, G.J.: Localization of a molecule immunochemically similar to eosinophil major basic protein in human placenta. J. Exp. Med. 160: 29–41, 1984.PubMedCrossRefGoogle Scholar
  367. Maidman, J.E., Thorpe, L.W., Harris, J.A., and Wynn, R.M.: Fetal origin of X-cells in human placental septa and basal plate. Obstet. Gynecol. 41: 547–552, 1973.PubMedGoogle Scholar
  368. Malak, T.M., Ockleford, C.D., Bell, S.C., Dalgleish, R., Bright, N., and MacVicar, J.: Confocal immunofluorescence localization of collagen type-I, type-III, type-IV, type-V and type-VI and their ultrastructural organization in term human fetal membranes. Placenta 14: 385–406, 1993.PubMedCrossRefGoogle Scholar
  369. Manaseki, S., and Searle, R.F.: Natural killer (NK) cell activity of first trimester human decidua. Cell. Immunol. 121: 166–173, 1989.PubMedCrossRefGoogle Scholar
  370. Manivel, J.C., Niehans, G., Wick, M.R., and Dehner, L.P.: Intermediate trophoblast in germ cell neoplasms. Am. J. Surg. Pathol. 11: 693–701, 1987.PubMedCrossRefGoogle Scholar
  371. Mansager, N., Bendon, R., Rosenn, B., Miodovnik, M., Mostello, D., and Siddiqi, T.A.: Maternal floor infarction: prenatal diagnosis and clinical significance [abstract 170]. Am. J. Obstet. Gynecol. 168: 347, 1993.Google Scholar
  372. Marais, W.D.: Human decidual spiral artery studies. I. Anatomy, circulation and pathology of the placenta. observations with a colposcope. J. Obstet. Gynaecol. Br. Commonw. 69: 1–122, 1962.CrossRefGoogle Scholar
  373. Martinek, J.J.: Fibrinoid and the fetal-maternal interface of the rat placenta. Anat. Rec. 166: 587–604, 1970.PubMedCrossRefGoogle Scholar
  374. Martinek, J.J.: Ultrastructure of the deciduotrophoblastic interface of the mouse placenta. Am. J. Obstet. Gynecol. 109: 424–431, 1971.PubMedGoogle Scholar
  375. Matsuo, H., Maruo, T., Murata, K., and Mochizuki, M.: Human early placental trophoblasts produce an epidermal growth factor-like substance in synergy with thyroid hormone. Acta Endocrinol. (Copenh.) 128: 225–229, 1993.Google Scholar
  376. Mau, G., and Netter, P.: Blutungen in der Frühschwangerschaft: ein Hinweis auf kindliche Mißbildungen? Z. Kinderheilk. 117: 79–88, 1974.CrossRefGoogle Scholar
  377. McCombs, H.L., and Craig, J.M.: Decidual necrosis in normal pregnancy. Obstet. Gynecol. 24: 436–442, 1964.PubMedGoogle Scholar
  378. McCormick, J.N., Faulk, W.P., Fox, H., and Fudenberg, H.H.: Immunohistological and elution studies of the human placenta. J. Exp. Med. 91: 1–13, 1971.CrossRefGoogle Scholar
  379. McKay, D.G., Hertig, A.T., Adams, E.C., and Richardson, M.V.: Histochemical observations on the human placenta. Obstet. Gynecol. 12: 1–36, 1958.PubMedCrossRefGoogle Scholar
  380. McWey, L.A., Singhas, C.A., and Rogol, A.D.: Prolactin binding sites on human chorion-decidua tissue. Am. J. Obstet. Gynecol. 144: 283–288, 1982.PubMedGoogle Scholar
  381. Moe, N.: Deposits of fibrin and plasma proteins in the normal human placenta. Acta Pathol. Microbiol. Scand. 76: 74–88, 1969a.CrossRefGoogle Scholar
  382. Moe, N.: Histological and histochemical study of the extracellular deposits in the normal human placenta. Acta Pathol. Microbiol. Scand. 76: 419–431, 1969b.CrossRefGoogle Scholar
  383. Moe, N.: The cytotrophoblastic cell columns and the cell islands of the normal human placenta. Acta Pathol. Microbiol. Scand. 76: 401–418, 1969c.CrossRefGoogle Scholar
  384. Moe, N.: The deposits of fibrin and fibrin-like materials in the basal plate of the normal human placenta. Acta Pathol. Microbiol. Scand. 75: 1–17, 1969d.Google Scholar
  385. Moll, U.M., and Lane, B.L.: Proteolytic activity of first trimester human placenta: localization of interstitial collagenase in villous and extravillous trophoblast. Histochemistry 94: 555–560, 1990.PubMedCrossRefGoogle Scholar
  386. Moll, W., Nienartowicz, A., Hees, H., Wrobel, K.-H., and Lenz, A.: Blood flow regulation in the uteroplacental arteries. Trophoblast Res. 3: 83–96, 1988.Google Scholar
  387. Monaghan, J., O’Herlihy, C., and Boylan, P.: Ultrasound placental grading and amniotic fluid quantitation in prolonged pregnancy. Obstet. Gynecol. 70: 349–352, 1987.PubMedGoogle Scholar
  388. Montemagno, U.: La sostanza fibrinoide placentare. Arch. Ostetr. Ginecol. (Napoli) 72: 585–596, 1967.Google Scholar
  389. Morris, N.H., Eaton, B.M., Sooranna, S.R., and Steer, P.J.: NO synthase activity in placental bed and tissues from normotensive pregnant women. Lancet 342: 679–680, 1993.PubMedCrossRefGoogle Scholar
  390. Mortimer, G., Mackay, M.M., and Stimson, W.H.: The distribution of pregnancy-associated prostaglandin synthetase inhibitor in the human placenta. J. Pathol. 159: 239–243, 1989.PubMedCrossRefGoogle Scholar
  391. Mossman, H.W.: Comparative morphogenesis of the foetal membranes and accessory uterine structures. Contrib. Embryol. Carnegie Inst. 26: 129–246, 1937.Google Scholar
  392. Mossman, H.W.: Vertebrate Fetal Membranes: Comparative Ontogeny and Morphology; Evolution; Phylogenetic Significance; Basic Functions; Research Opportunities. Macmillan, London, 1987.Google Scholar
  393. Mühlhauser, J., Crescimanno, C., Kaufmann, P., Höfler, H., Zaccheo, D., and Castellucci, M.: Differentiation and proliferation patterns in human trophoblast revealed by cerbB-2 oncogene product and EGF-R. J. Histochem. Cytochem. 41: 165–173, 1993.PubMedCrossRefGoogle Scholar
  394. Naeye, R.L.: Maternal floor infarction. Hum. Pathol. 16: 823828, 1985.Google Scholar
  395. Nanaev, A.K., Milovanov, A.P., and Domogatsky, S.P.: Immunohistochemical localization of extracellular matrix in perivillous fibrinoid of normal human term placenta. Histochemistry 100: 341–346, 1993a.PubMedCrossRefGoogle Scholar
  396. Nanaev, A.K., Milovanov, A.P., and Domogatsky, S.P.; Immunohistochemical localization of extracellular matrix in various types of fibrinoid of the normal human term placenta. Placenta 14:A. 55, 1993b.Google Scholar
  397. Nelson, D.M., Crouch, E.C., Curran, E.M., and Farmer, D.R.: Trophoblast interaction with fibrin matrix. Epithelialization of perivillous fibrin deposits as a mechanism for villous repair in the human placenta. Am. J. Pathol. 136: 855–865, 1990.PubMedGoogle Scholar
  398. Neuberg, M.: Decidual prolactin. Wiad. Lek. 45: 376–380, 1992.PubMedGoogle Scholar
  399. Neumann, E.: Die Picrocarminfärbung und ihre Anwendung auf die Entzündungslehre. Arch. Mikrosk. Anat. 18: 130150, 1880.Google Scholar
  400. Nickel, R.E.: Maternal floor infarction: an unusual cause of intrauterine growth retardation. Am. J. Dis. Child. 142: 1270–1271, 1988.PubMedGoogle Scholar
  401. Nikolov, S.D., and Schiebler, T.H.: Über die Gefässe der Basalplatte der reifen menschlichen Placenta. Licht-und elektronenmikroskopische Untersuchungen. Z. Zellforsch. 139: 319–332, 1973.PubMedCrossRefGoogle Scholar
  402. Nitabuch, R.: Beiträge zur Kenntnis der menschlichen Plazenta. Inaugural dissertation, Stämpfli, Bern, 1887.Google Scholar
  403. Ockleford, C.D., Malak, T., Hubbard, A., Bracken, K., Burton, S.A., Bright, N., Blakey, G., Goodliffe, J., Garrod, D., and d’Lacey, C.: Human amniochorion cytoskeletons at term. Placenta 14: A56, 1993.CrossRefGoogle Scholar
  404. Ockleford, C., Bright, N., Hubbard, A., d’Lacey, C., Smith, J., Gardiner, L., Sheikh, T., Albentosa, M., and Turtle, K.: Micro-trabeculae, macro-plaques or mini-basement membranes in human term fetal membranes. Philos. Trans. R. Soc. Lond. [Biol.] 342: 121–136, 1994.CrossRefGoogle Scholar
  405. O’Connor, D.M., and Kurman, R.J.: Intermediate trophoblast in uterine curettings in the diagnosis of ectopic pregnancy. Obstet. Gynecol. 72: 665–670, 1988a.PubMedGoogle Scholar
  406. O’Connor, D.M., and Kurman, R.J.: Utilization of intermediate trophoblast in the diagnosis of an in utero gestation in endometrial curettings without chorionic villi. Mod. Pathol. 1: 68A, 1988b.Google Scholar
  407. Okudaira, Y., Hashimoto, T., Hamanaka, N., and Yoshinare, S.: Electron microscopic study on the trophoblastic cell column of human placenta. J. Electron Microsc. 20: 93–106, 1971.Google Scholar
  408. Okudaira, Y., Matsui, Y., and Kanoh, H.: Morphological variability of human trophoblasts in normal and neoplastic conditions—an ultrastructural reappraisal. In, Placenta: Basic Research for Clinical Application. H. Soma, ed. Karger, Basel, 1991.Google Scholar
  409. Olâh, C.S., Gee, H., Rushton, I., and Fowlie, A.: Massive subchorionic thrombohaematoma presenting as a placental tumour: case report. Br. J. Obstet. Gynaecol. 94: 995–997, 1987.PubMedCrossRefGoogle Scholar
  410. Ono, H., Ide, C., and Nishiya, I.: Electron microscopic study on early decidualization of the endometrium of pregnant mice, with special reference to gap junctions. Placenta 10: 247–261, 1989.PubMedCrossRefGoogle Scholar
  411. Ornoy, A., Benady, S., Kohen-Raz, R., and Russell, A.: Association between maternal bleeding during gestation and congenital anomalies in the offspring. Am. J. Obstet. Gynecol. 124: 474–478, 1976.PubMedGoogle Scholar
  412. Ortmann, R.: Histochemische Untersuchungen an menschlicher Plazenta mit besonderer Berücksichtigung der Kernkugeln (Kerneinschlüsse) und der Plasmalipoideinschlüsse. Z. Anat. Entwicklungsgesch. 119: 28–55, 1955.PubMedCrossRefGoogle Scholar
  413. Ortmann, R.: Morphologie der menschlichen Placenta. Anat. Anz. 106 /107: 27–56, 1960.Google Scholar
  414. Oswald, B., and Gerl, D.: Die Mikrofibrinoidablagerungen in der menschlichen Placenta. Acta Histochem. 42: 356–359, 1972.PubMedGoogle Scholar
  415. Pace, D., Morrison, L., and Bulmer, J.N.: Proliferative activity in endometrial stromal granulocytes throughout menstrual cycle and early pregnancy. J. Clin. Pathol. 42: 35–39, 1989.PubMedCrossRefGoogle Scholar
  416. Paddock, R., and Greer, E.D.: Origin of common cystic structure of human placenta. Am. J. Obstet. Gynecol. 13: 164–173, 1927.Google Scholar
  417. Padykula, H.A., and Driscoll, S.G.: Decidual cell differentiation in the normal early gestational uterus includes lymphoid infiltration. Anat. Rec. 190: 500–501, 1978.Google Scholar
  418. Pampfer, S., Daiter, E., Barad, D., and Pollard, J.W.: Expression of the colony-stimulating factor-1 receptor (cfms proto-oncogene product) in the human uterus and placenta. Biol. Reprod. 46: 48–57, 1992.PubMedCrossRefGoogle Scholar
  419. Panigel, M., and Pascaud, M.: Les orifices artériels d’entrée du sang maternel dans la chambre intervilleuse du placenta humain. Bull. Assoc. Anat. 53rd Congres (Tours. No. 142 ), pp. 1287–1298, 1968.Google Scholar
  420. Parhar, R.S., Yagel, S., and Lala, P.K.: PGE2—mediated immunosuppression by first trimester human decidual cells blocks activation of maternal leukocytes in the decidua with potential anti-trophoblast activity. Cell Immunol. 120: 6174, 1989.CrossRefGoogle Scholar
  421. Park, W.W.: Disorders arising from the human trophoblast. In, Modern Trends in Pathology. D.H. Collins, ed., pp. 180–211. Butterworth, London, 1959.Google Scholar
  422. Parmley, T.H., Gupta, P.K., and Walker, M.A.: “Aging” pigments in term human placenta. Am. J. Obstet. Gynecol. 139: 760–766, 1981.PubMedGoogle Scholar
  423. Peel, S., and Bulmer, D.: The fine structure of the rat metrial gland in relation to the origin of the granulated cells. J. Anat. 123: 687–969, 1977.PubMedGoogle Scholar
  424. Perrin, E.V.D.K.: Placenta as a reflection of fetal disease: a brief overview. In, Pathology of the Placenta. E.V.D.K. Perrin, ed. Churchill Livingstone, New York, 1984.Google Scholar
  425. Petraglia, F., Sawchenko, P., Lim, A.T.W., Rivier, J., and Vale, W.: Localization, secretion, and action of inhibin in human placenta. Science 237: 187–189, 1987.PubMedCrossRefGoogle Scholar
  426. Petrucha, R.A., and Platt, L.D.: Relationship of placental grade to gestational age. Am. J. Obstet. Gynecol. 144: 733735, 1982.Google Scholar
  427. Petry, G.: Der Bau der menschlichen Eihaut und seine funk- tionelle Bedeutung. Klin. Wochenschr. 32: 1020, 1954a.Google Scholar
  428. Petry, G.: Studien über die morphologischen Grundlagen des Blasensprungs. Zentralbl. Gynäkol. 76:655— 675, 1954b.Google Scholar
  429. Pfeiffer, R.A.: Nanisme microcephalique letal: exemple de pathologie placentaire d’origine genetique ? J. Genet. Hum. 22: 259–261, 1974.PubMedGoogle Scholar
  430. Pijnenborg, R., Dixon, G., Robertson, W.B., and Brosens, I.: Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1: 3–19, 1980.PubMedCrossRefGoogle Scholar
  431. Pijnenborg, R., Robertson, W.B., Brosens, I., and Dixon, G.: Trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 2: 71–92, 1981.PubMedCrossRefGoogle Scholar
  432. Piotrowicz, R.S., Orchekowski, D.J., Nugent, D.J., Yamada, K.Y., and Kunicki T.J.: Glycoprotein le-IIa functions as an activation-independent fibronectin receptor on human platelets. J. Cell Biol. 106: 1359–1364, 1988.PubMedCrossRefGoogle Scholar
  433. Pitkin, R.M.: Calcium metabolism in pregnancy: a review. Am. J. Obstet. Gynecol. 121: 724–737, 1975.PubMedGoogle Scholar
  434. Pitkin, R.M., Reeynolds, W.A., Williams, G.A., and Hargis, G.K.: Calcium metabolism in normal pregnancy: a longitudinal study. Am. J. Obstet. Gynecol. 133: 781–790, 1979.PubMedGoogle Scholar
  435. Powell, H.C., Benirschke, K., Favara, B.E., and Pflueger, O.H.: Foamy changes of placental cells in fetal storage disorders. Virchows Arch. [A] 369: 191–196, 1976.Google Scholar
  436. Pozniak, M.A., Cullenward, M.J., Zickuhr, D., and Curet, L.B.: Venous lake bleeding: a complication of chorionic villus sampling. J. Ultrasound Med. 7: 297–299, 1988.PubMedGoogle Scholar
  437. Raghupathy, R., Singh, B., Barrington-Leigh, J., and Wegmann, T.G.: The ontogeny and turnover kinetics of paternal H-2 K antigenic determinants on the allogenic murine placenta. J. Immunol. 127: 2074, 1981.PubMedGoogle Scholar
  438. Raghupathy, R., Singh, B., and Wegmann, T.G.: Fate of antipaternal H-2 antibodies bound to the placenta in vivo. Transplantation 37: 296, 1984.PubMedCrossRefGoogle Scholar
  439. Ramsey, E.M.: Circulation in the maternal placenta of the rhesus monkey and man, with observations on the marginal lakes. Am. J. Anat. 98: 159–190, 1956.PubMedCrossRefGoogle Scholar
  440. Ramsey, E.M.: Circulation in the intervillous space of the primate placenta. Am. J. Obstet. Gynecol. 84: 1649–1663, 1962.PubMedGoogle Scholar
  441. Ramsey, E.M.: The story of the spiral arteries. J. Reprod. Med. 26: 393–399, 1981.PubMedGoogle Scholar
  442. Ramsey, E.M., and Donner, M.W.: Placental Vasculature and Circulation. Thieme, Stuttgart, 1980.Google Scholar
  443. Ramsey, E.M., and Harris, J.W.S.: Comparison of uteroplacental vasculature and circulation in the rhesus monkey and man. Contrib. Embryol. Carnegie Inst. 38: 59–70, 1966.Google Scholar
  444. Ramsey, E.M., Corner, G.W., Jr., and Donner, M.W.: Serial and cineradioangiographic visualization of maternal circulation in the primate (hemochorial) placenta. Am. J. Obstet. Gynecol. 86: 213–225, 1963.PubMedGoogle Scholar
  445. Ramsey, E.M., Martin, C.B., Jr., McGaughey, H.S., Jr., Kaiser, I.H., and Donner, M.W.: Venous drainage of the placenta in rhesus monkeys: radiographic studies. Am. J. Obstet. Gynecol. 95: 948–955, 1966.PubMedGoogle Scholar
  446. Reddy, G.S., Norman, A.W., Willis, D.M., Goltzman, D., Guyda, H., Solomon, S., Philips, D.R., Bishop, J.E., and Mayer, E.: Regulation of vitamin D metabolism in normal human pregnancy. J. Clin. Endocrinol. Metab. 56: 363–370, 1983.PubMedCrossRefGoogle Scholar
  447. Redline, R.W., and Lu, C.Y.: Specific defects in the antilisterial immune response in discrete regions of the murine uterus and placenta account for susceptibility to infection. J. Immunol. 140: 3947–3955, 1988.PubMedGoogle Scholar
  448. Ren, S.G., and Braunstein, G.D.: Decidua produces a protein that inhibits choriogonadotrophin release from human trophoblasts. J. Clin. Invest. 87: 326–330, 1991.PubMedCrossRefGoogle Scholar
  449. Reshef, E., Lei, Z.M., Rao, C.V., Pridham, D.D., Chegini, N., and Luborsky, J.L.: The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. J. Clin. Endocrinol. Metab. 70: 421–430, 1990.PubMedCrossRefGoogle Scholar
  450. Reynolds, S.R.M.: Formation of fetal cotyledons in the hemochorial placenta: a theoretical consideration of the functional implication of such an arrangements. Am. J. Obstet. Gynecol. 94: 425–439, 1966.PubMedGoogle Scholar
  451. Riley, S.C., Walton, J.C., Herlick, J.M., and Challis, J.R.: The localization and distribution of corticotropin-releasing hormone in the human placenta and fetal membranes throughout gestation. J. Clin. Endocrinol. Metab. 72: 1001–1007, 1991.PubMedCrossRefGoogle Scholar
  452. Riddick, D.H., and Daly, D.C.: Decidual prolactin in human gestation. Semin. Perinatol. 6: L229–237, 1982.Google Scholar
  453. Riley, S.C., Dupont, E., Walton, J.C., Luuthe, V., Labrie, F., Pelletier, G., and Challis, J.R.G.: Immunohistochemical localization of 30-hydroxy-5-ene-steroid dehydrogenase deltas — delta4 isomerase in human placenta and fetal membranes throughout gestation. J. Clin. Endocrinol. Metab. 75: 956–961, 1992.PubMedCrossRefGoogle Scholar
  454. Ritson, A., and Bulmer, J.N.: Isolation and functional studies of granulated lymphocytes in first trimester human decidua. Clin. Exp. Immunol. 77: 263–268, 1989.PubMedGoogle Scholar
  455. Robb, J.A., Benirschke, K., and Barmeyer, R.: Intrauterine latent herpes simplex virus infection. I. Spontaneous abortion. Hum. Pathol. 17: 1196–1209, 1986a.PubMedCrossRefGoogle Scholar
  456. Robb, J.A., Benirschke, K., Mannino, F., and Voland, J.: Intrauterine latent herpes simplex virus infection. II. Latent neonatal infection. Hum. Pathol. 17: 1210–1217, 1986b.PubMedCrossRefGoogle Scholar
  457. Robertson, W.B.: Uteroplacental vasculature. J. Clin. Pathol. 29(Suppl.):9–17, 1976; R. Coll. Pathol. 10: 9–17, 1976.Google Scholar
  458. Robertson, W.B., and Manning, P.J.: Elastic tissue in uterine blood vessels. J. Pathol. 112: 237–243, 1974.PubMedCrossRefGoogle Scholar
  459. Robertson, W.B., and Warner, B.: The ultrastructure of the human placental bed. J. Pathol. 112: 203–211, 1974.PubMedCrossRefGoogle Scholar
  460. Robinson, L., Grau, P., and Crandall, B.F.: Pregnancy outcomes after increasing maternal serum alpha-fetoprotein levels. Obstet. Gynecol. 74: 17–20, 1989.PubMedGoogle Scholar
  461. Rohr, K.: Die Beziehungen der mütterlichen Gefäße zu den intervillösen Räumen der reifen Plazenta speziell zur Thrombose derselben (“weisser Infarkt”). Virchows Arch. [Pathol. Anat.] 115: 505–534, 1889.Google Scholar
  462. Romano, W.M., Lukash, L.A., Challis, J.R.G., and Mitchell, B.F.: Substrate utilization for estrogen synthesis by human fetal membranes and decidua. Am. J. Obstet. Gynecol. 155: 1170–1175, 1986.PubMedGoogle Scholar
  463. Rosen, J.F., Roginsky, M., Nathenson, G., and Finberg, L.: 25-Hydroxyvitamin D: plasma levels in mothers and their premature infants with neonatal hypocalcemia. Am. J. Dis. Child. 127: 220–223, 1974.PubMedGoogle Scholar
  464. Rosenberg, S.M., and Bhatnagar, A.S.: Sex steroid and human chorionic gonadotropin modulation of in vitro prolactin production by human term decidua. Am. J. Obstet. Gynecol. 148: 461–465, 1984.PubMedGoogle Scholar
  465. Rosenberg, S.M., Maslar, I.A., and Riddick, D.H.: Decidual production of prolactin in late gestation: further evidence for a decidual source of amniotic fluid prolactin. Am. J. Obstet. Gynecol. 138: 681–685, 1980.PubMedGoogle Scholar
  466. Rossant, J., and Croy, B.A.: Genetic identification of tissue of origin of cellular populations within the mouse placenta. J. Embryo]. Exp. Morphol. 86: 177–189, 1985.Google Scholar
  467. Ruffolo, R., Benirschke, K., Covington, H.I., and Munro, A.B.: Electron microscopic study of the “X-cells” in septal cysts of the human placenta. Am. J. Obstet. Gynecol. 99: 1147–1159, 1967.PubMedGoogle Scholar
  468. Rukosuev, V.S., Nanaev, A.K., and Milovanov, A.P.: Participation of collagen types I, III, IV, V, and fibronectin in the formation of villi fibrosis in human term placenta. Acta Histochem. 89: 11–16, 1990.PubMedCrossRefGoogle Scholar
  469. Ruoslahti, E., and Pierschbacher, M.D.: New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497, 1987.PubMedCrossRefGoogle Scholar
  470. Russell, J.G.B.: Antenatal diagnosis of placental calcification. J. Obstet. Gynaecol. Br. Commonw. 76: 813–126, 1969.PubMedCrossRefGoogle Scholar
  471. Rutanen, E.M., Partanen, S., and Pekonen, F.: Decidual transformation of human extrauterine mesenchymal cells is associated with the appearance of insulin-like growth factor-binding protein-1. J. Clin. Endocrinol. Metab. 72: 27–31, 1991.PubMedCrossRefGoogle Scholar
  472. Rutherford, R.N.: The significance of bleeding in early pregnancy as evidenced by decidual biopsy. Surg. Gynecol. Obstet. 74: 1139–1153, 1942.Google Scholar
  473. Sachs, H.: Quantitativ histochemische Untersuchung des Endometrium in der Schwangerschaft und der Placenta (Cytophotometrische Messungen). Arch. Gynecol. 205: 93104, 1968.Google Scholar
  474. Saijonmaa, O., Laatikainen, T., and Wahlström, T.: Corticotrophin-releasing factor in human placenta: localization, concentration and release in vitro. Placenta 9: 373–385, 1988.PubMedCrossRefGoogle Scholar
  475. Saito, S., Nishikawa, K., Morii, T., Enomoto, M., Narita, N., Motoyoshi, K., and Ichijo, M.: Cytokine production by CD16–CD56(bright) natural killer cells in the human early pregnancy decidua. Int. Immunol. 5: 559–563, 1993.PubMedCrossRefGoogle Scholar
  476. Saji, M., Taga, M., and Minaguchi, H.: Epidermal growth factor stimulate cell proliferation and inhibits prolactin secretion of the human decidual cells in culture. Endocrinol. Jpn. 37: 177–182, 1990.PubMedCrossRefGoogle Scholar
  477. Sakbun, V., Ali, S.M., Greenwood, F.C., and Bryant Greenwood, G.D.: Human relaxin in the amnion, chorion, decidua parietalis, basal plate, and placental trophoblast by immunocytochemistry and Northern analysis. J. Clin. Endocrinol. Metab. 70: 508–514, 1990a.PubMedCrossRefGoogle Scholar
  478. Sakbun, V., Ali, S.M., Lee, Y.A., Jara, C.S., and Bryant Greenwood, G.D.: Immunocytochemical localization and messenger ribonucleic acid concentrations for human placental lactogen in amnion, chorion, decidua, and placenta. Am. J. Obstet. Gynecol. 162: 1310–1317, 1990b.PubMedGoogle Scholar
  479. Sala, M.A., Matheus, M., and Valeri, V.: Regional variation in the frequency of fibrinoid degeneration in the human term placenta. Z. Geburtshilfe Perinatol. 186: 80–81, 1982a.PubMedGoogle Scholar
  480. Sala, M.A., Valeri, V., and Matheus, M.: Michaelis-Gutmann bodies in human placental fibrinoid. Arch. Biol. (Bruxelles) 93: 363–367, 19826.Google Scholar
  481. Sasagawa, M., Yamazaki, T., Sudo, Y., Kanazawa, K., and Takeuchi, S.: Immunohistochemical localization of hCG a, hCG ß, CTP, hPL and SP1 on villous and extravillous trophoblasts in normal human pregnancy. Nippon Sanka Fujinka Gakkai Zasshi 39: 1073–1079, 1987.PubMedGoogle Scholar
  482. Sauramo, H.: Cytotrophoblast of the placenta and foetal membranes in normal and pathological obstetrics. Ann. Med. Exp. Fenn. 39: 7–12, 1961.PubMedGoogle Scholar
  483. Schaaps, J.P., and Hustin, J.: In vivo aspect of the maternaltrophoblastic border during the first trimester of gestation. Trophoblast Res. 3: 39–48, 1988.Google Scholar
  484. Scheuner, G.: Über die Verankerung der Nabelschnur an der Plazenta. Morphol. Jahrb. 106: 73–89, 1964.Google Scholar
  485. Schiebler, T.H., and Kaufmann, P.: Reife Plazenta. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds. Thieme, Stuttgart, 1981.Google Scholar
  486. Schiebler, T.H., and Knoop, A.: Histochemische und elektronenmikroskopische Untersuchungen an der Rattenplacenta. Z. Zellforsch. 50: 494–552, 1959.PubMedCrossRefGoogle Scholar
  487. Schindler, A.M., Bordignon, P., and Bischof, P.: Immunohistochemical localization of pregnancy-associated plasma protein A in decidua and trophoblast: comparison with human chorionic gonadotrophin and fibrin. Placenta 5: 227–235, 1984.PubMedCrossRefGoogle Scholar
  488. Schmidt-Matthiesen, H.: Das normale menschliche Endometrium. Thieme, Stuttgart, 1963.Google Scholar
  489. Schuhmann, R.: Plazenton: Begriff, Entstehung, funktionelle Anatomie. In, Die Plazenta des Menschen. V. Becker, T.H. Schiebler, and F. Kubli, eds., pp. 192–207. Thieme, Stuttgart, 1981.Google Scholar
  490. Schuhmann, R., and Wehler, V.: Histologische Unterschiede an Plazentazotten innerhalb der maternofetalen Strömungseinheit: ein Beitrag zur funktionellen Morphologie der Plazenta. Arch. Gynecol. 210: 425–439, 1971.Google Scholar
  491. Schultze, K.W.: Über Randsinusblutungen aus der Plazenta in der Schwangerschaft und unter der Geburt. Geburtshilfe Frauenheilkd. 13: 708–715, 1953.PubMedGoogle Scholar
  492. Schultze, K.W.: Über sog. Plazenta-Randsinusblutungen. Dtsch. Hebammen. Z. 20: 1–4, 1968.Google Scholar
  493. Schwartz, A., Sauer, J., Hradeckky, L., and Pavlik, V.: Die Zysten der menschlichen Plazenta. Zentralbl. Allg. Pathol. 117: 185–190, 1973.PubMedGoogle Scholar
  494. Scipiades, E., and Burg, E.: Über die Morphologie der menschlichen Placenta mit besonderer Rücksicht auf unsere eigenen Studien. Arch. Gynecol. 141: 577–619, 1930.Google Scholar
  495. Sengel, A., and Stöbner, P: Ultrastructure de l’endometre humain normal. III. Les cellules K. Z. Zellforsch. 133: 4757, 1972.CrossRefGoogle Scholar
  496. Sengupta, J., Given, R.L., Talwar, D., and Ghosh, D.: Endometrial response to deciduogenic stimulus in ovariectomized rhesus monkeys treated with oestrogen and progesterone: an ultrastructural study. J. Endocrinol. 124: 53–57, 1990.PubMedCrossRefGoogle Scholar
  497. Serr, D.M., Sadowski, A.D., and Kohn, G.: The placental septa; a study based upon nuclear morphological sex difference. J. Obstet. Gynaecol. Br. Commonw. 65: 747–777, 1958.CrossRefGoogle Scholar
  498. Shanklin, D.R., and Scott, J.S.: Massive subchorial thrombohaematoma (Breus’ mole). Br. J. Obstet. Gynaecol. 82: 476–487, 1975.PubMedCrossRefGoogle Scholar
  499. Sheppard, B.L., and Bonnar, J.: Scanning electron microscopy of the human placenta and decidual spiral arteries in normal pregnancy. J. Obstet. Gynaecol. Br. Commonw. 81: 17–20, 1974a.Google Scholar
  500. Sheppard, B.L., and Bonnar, J.: The ultrastructure of the arterial supply of the human placenta in early and late pregnancy. J. Obstet. Gynaecol. Br. Commonw. 81: 497511, 1974b.Google Scholar
  501. Sheppard, B.L., and Bonnar, J.: The ultrastructure of the arterial supply of the human placenta in pregnancy complicated by fetal growth retardation. Br. J. Obstet. Gynaecol. 83: 948–959, 1976.PubMedCrossRefGoogle Scholar
  502. Sheppard, B.L., and Bonnar, J.: The maternal blood supply to the placenta in pregnancy complicated by intrauterine fetal growth retardation. Trophoblast Res. 3: 69–82, 1988.Google Scholar
  503. Shipley, C.F., and Nelson, G.H.: Prenatal diagnosis of a placental cyst: comparison of postnatal biochemical analyses of cyst fluid, amniotic fluid, cord serum, and maternal serum. Am. J. Obstet. Gynecol. 168: 211–213, 1993.PubMedGoogle Scholar
  504. Shorter, S.C., Jackson, M.C., Sargent, I.L., Redman, C.W., and Starkey, P.M.: Purification of human cytotrophoblast from term amniochorion by flow cytometry. Placenta 11: 505–513, 1990.PubMedCrossRefGoogle Scholar
  505. Shorter, S.C., Vince, G.S., and Starkey, P.M.: Production of granulocyte colony-stimulating factor at the maternofoetal interface in human pregnancy. Immunology 75: 468–474, 1992.PubMedGoogle Scholar
  506. Shorter, S.C., Starkey, P.M., Ferry, B.L., Clover, L.M., Sargent, I.L., and Redman, C.W.G.: Antigenic heterogeneity of human cytotrophoblast and evidence for the transient expression of MHC class I antigens distinct from HLA-G. Placenta 14: 571–582, 1993.PubMedCrossRefGoogle Scholar
  507. Simmen, R.C.M., Ko, Y., Liu, X.H., Wilde, M.H., Pope, W.F., and Simmen, F.A.: A uterine cell mitogen distinct from epidermal growth factor in porcine uterine luminal fluids: characterization and partial purification. Biol. Reprod. 38: 551–561, 1988.PubMedCrossRefGoogle Scholar
  508. Singer, M., and Wislocki, G.B.: The affinity of syncytium, fibrin and fibrinoid of the human placenta for acid and basic dyes under controlled conditions of staining. Anat. Rec. 102: 175–194, 1948.PubMedCrossRefGoogle Scholar
  509. Sinha, A.A.: Ultrastructure of human amnion and amniotic plaques of normal pregnancy. Z. Zellforsch. 122: 1–14, 1971.PubMedCrossRefGoogle Scholar
  510. Sohval, A.R., Gaines, J.A., and Strauss, L.: Chromosomal sex determination in the human newborn and fetus from examination of the umbilical cord, placental tissue, and fetal membranes. Ann. N.Y. Acad. Sci. 75: 905–922, 1959.PubMedCrossRefGoogle Scholar
  511. Soma, H., Satoh, M., Higashi, S., Horikiri, H., Hata, T., Isaka, K., and Malla, D.: Fine structure and biological properties of chorionic cysts. In: Placenta: Basic Research for Clinical Application. H. Soma, ed., pp. 200–208, Karger, Basel, 1991.Google Scholar
  512. Sonnenberg, A., Modderman, P.W., and Hogervorst, F.: Laminin receptor on platelets is the integrin VLA-6. Nature 336: 487–489, 1988.PubMedCrossRefGoogle Scholar
  513. Sorensen, F.B., Marcussen, N., Daugaard, H.O., Kristiansen, J.D., Moller, J., and Ingerslev, H.J.: Immunohistological demonstration of intermediate trophoblast in the diagnosis of uterine versus ectopic pregnancy: a retrospective survey and results of a prospective trial. Br. J. Obstet. Gynaecol. 98: 463–469, 1991.PubMedCrossRefGoogle Scholar
  514. Spanner, R.: Der Kreislauf im intervillösen Raum des Menschen: Untersuchungen an den Uteroplacentargefässen schwangerer Uteri. Anat. Anz. 78: 127–129, 1934.Google Scholar
  515. Spanner, R.: Mütterlicher und kindlicher Kreislauf der menschlichen Placenta und seine Strombahnen. Z. Ges. Anat. 105: 163–242, 1935.CrossRefGoogle Scholar
  516. Spanner, R.: Zellinseln und Zottenepithel in der zweiten Hälfte der Schwangerschaft. Morphol. Jahrb. 86: 407–461, 1941.Google Scholar
  517. Spornitz, U.M.: The functional morphology of the human endometrium and decidua. Adv. Anat. Embryol. Cell Biol. 124: 1–99, 1992.PubMedCrossRefGoogle Scholar
  518. Spornitz, U.M., and Ludwig, K.S.: Die Ultrastruktur der menschlichen Deziduazelle. Acta Anat. (Basel) 120: 245, 1984.Google Scholar
  519. Stark, J., and Kaufmann, P.: Die Basalplatte der reifen menschlichen Placenta. II. Gefrierschnitt-Histochemie. Z. Anat. Entwicklungsgesch. 135: 185–201, 1971.PubMedCrossRefGoogle Scholar
  520. Stark, J., and Kaufmann, P.: Die Basalplatte der reifen menschlichen Placenta. III. Bindegewebs-und Deciduazellen. Arch. Gynecol. 213: 399–417, 1973.Google Scholar
  521. Stark, J., and Kaufmann, P.: Infarktgenese in der Placenta. Arch. Gynecol. 217: 189–208, 1974.Google Scholar
  522. Stegner, H.E., Sachs, H., and Uthmöller, E.: Elektronenmikroskopische Untersuchungen am experimentellen Deziduom der Ratte. Z. Geburtshilfe Gynäkol. 174: 24 1251, 1971.Google Scholar
  523. Steininger, H.: Über die Herkunft von Septen und Inseln der menschlichen Plazenta. Arch. Gynecol. 226: 261–275, 1978.PubMedCrossRefGoogle Scholar
  524. Stieve, H.: Neue Untersuchungen über die Placenta, besonders über die Entstehung der Placentasepten. Arch. Gynecol. 161: 160–167, 1936.Google Scholar
  525. Stieve, H.: Die Entwicklung und der Bau der menschlichen Placenta. I. Zotten, Trophoblastinseln und Scheidewaende in der ersten Hälfte der Schwangerschaft. Z. Mikrosk. Anat. Forsch. 48: 287–358, 1940.Google Scholar
  526. Stieve, H., and von der Heide, I.: Über die Entwicklung der Septen in der menschlichen Plazenta. Anat. Anz. 92: 1–16, 1941.Google Scholar
  527. Straatsburg, I.H., and Gossrau, R.: Enzyme histochemistry of the regressing rat decidua and metrial gland. Acta Histochem. 94: 202–219, 1993.PubMedCrossRefGoogle Scholar
  528. Sunderland, C.A., Bulmer, J.N., Luscombe, M., Redman, C.W.G., and Stirrat, G.M.: Immunohistological and biochemical evidence for a role for hyaluronic acid in the growth and development of the placenta. J. Reprod. Immunol. 8: 197–212, 1985.PubMedCrossRefGoogle Scholar
  529. Sutcliffe, R.G., Davies, M., Hunter, J.B., Waters, J.J., and Parry, J.E.: The protein composition of the fibrinoid material at the human uteroplacental interface. Placenta 3: 297–308, 1982.PubMedCrossRefGoogle Scholar
  530. Sutherland, A.E., Calarco, P.G., and Damsky, C.H.: Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J.Cell Biol. 106: 1331–1348, 1988.PubMedCrossRefGoogle Scholar
  531. Swinburne, L.M.: Leucocyte antigens and placental sponge. Lancet 2: 592–593, 1970.PubMedCrossRefGoogle Scholar
  532. Takayama, M., Isaka, K., Suzuki, Y., Funayama, H., Akiya, K., and Bohn, H.: Comparative study of placental protein 19, human chorionic gonadotrophin and pregnancy-specific 01-glycoprotein as immunohistochemical markers for extravillous trophoblast in pregnancy and trophoblastic disease. Histochemistry 93: 167–173, 1989.PubMedCrossRefGoogle Scholar
  533. Tarachand, U.: Morphogenesis and postulated functions of decidual cells. Biol. Res. Pregnancy Perinatol. 6: 187–190, 1985.PubMedGoogle Scholar
  534. Tarachand, U.: Decidualisation: origin and role of associated cells. Biol. Cell 57: 9–16, 1986.PubMedCrossRefGoogle Scholar
  535. Tavare, J.M., and Holmes, C.H.: Differential expression of the receptors for epidermal growth factor and insulin in the developing human placenta. Cell Signal 1: 55–64, 1989.PubMedCrossRefGoogle Scholar
  536. Tekelioglu-Uysal, M., Edwards, R.J., and Kisnisci, H.A.: Ultrastructural relationships between decidua, trophoblast and lymphocytes at the beginning of human pregnancy. J. Reprod. Fertil. 42: 431–438, 1975.PubMedCrossRefGoogle Scholar
  537. Thiede, H.A., and Choate, J.W.: Chorionic localization in the human placenta by immunofluorescent staining. II. Demonstration of hCG in the trophoblast and amnion epithelium of immature and mature placentas. Obstet. Gynecol. 22: 433–443, 1963.PubMedGoogle Scholar
  538. Thliveris, J.A., and Speroff, L.: Ultrastructure of the placental villi, chorion laeve, and decidua parietalis in normal and hypertensive pregnant women. Am. J. Obstet. Gynecol. 129: 492–498, 1977.PubMedGoogle Scholar
  539. Thomas, J.B.: Breus’ mole. Obstet. Gynecol. 24: 794–797, 1964.PubMedGoogle Scholar
  540. Thomsen, K., and Willemsen, R.: Histochemische Untersuchungen über die Produktionsorte der Choriongonadotropine. Acta Endocrinol. (Copenh.) 30: 161–174, 1959.Google Scholar
  541. Thrailkill, K.M., Golander, A., Underwood, L.E., Richards, R.G., and Handwerger, S.: Insulin stimulates the synthesis and release of prolactin from human decidual cells. Endocrinology 124: 3010–3014, 1989.PubMedCrossRefGoogle Scholar
  542. Thrower, S., Bulmer, J.N., Griffin, N.R., and Wells, M.: Further studies of lectin binding by villous and extravillous trophoblast in normal and pathological pregnancy. Int. J. Gynecol. Pathol. 10: 238–251, 1991.PubMedCrossRefGoogle Scholar
  543. Tighe, J.R., Garrod, P.R., and Curran, R.C.: The trophoblast of the human chorionic villus. J. Pathol. Bacteriol. 93: 559–567, 1967.PubMedCrossRefGoogle Scholar
  544. Tindall, V.R., and Scott, J.S.: Placental calcification: a study of 3,025 singleton and multiple pregnancies. J. Obstet. Gynaecol. Br. Commonw. 72: 356–373, 1965.PubMedCrossRefGoogle Scholar
  545. Torpin, R.: Subchorial haematoma mole: hypothetical aetiology. J. Obstet. Gynaecol. Br. Emp. 67: 990, 1960.PubMedCrossRefGoogle Scholar
  546. Torpin, R.: Breus subchorial hematoma mole at three or four months of pregnancy. Pacific Med. Surg. 74: 226–227, 1966.Google Scholar
  547. Tsang, R.C., Donavan, E.F., and Steichen, J.J.: Calcium physiology and pathology in the neonate. Pediatr. Clin. North Am. 23: 611–626, 1976.PubMedGoogle Scholar
  548. Tuttle, S.E., O’Toole, R.V., O’Shaughnessy, R.W., and Zuspan, F.P.: Immunohistochemical evaluation of human placental implantation: an initial study. Am. J. Obstet. Gynecol. 153: 239–244, 1985.PubMedGoogle Scholar
  549. Uhlendorf, B., and Kaufmann, P.: Die Entwicklung des Plazentastieles beim Meerschweinchen. Zentralbl. Veterinarmed. [C] 8: 233–247, 1979.Google Scholar
  550. Vernof, K.K., Benirschke, K., Kephart, G.M., Wasmoen, T.L., and Gleich, G.J.: Maternal floor infarction: relationship to X cells, major basic protein, and adverse perinatal outcome. Am. J. Obstet. Gynecol. 167: 1355–1963, 1992.PubMedGoogle Scholar
  551. Vicovac, L., Jones, C.J.P., and Aplin, J.D.: Morphogenesis of human placental anchoring villi in culture. Placenta 14: A. 80, 1993.Google Scholar
  552. Wachstein, M., Meagher, J.G., and Ortiz, J.: Enzymatic histochemistry of the term human placenta. Am. J. Obstet. Gynecol. 87: 13–26, 1963.PubMedGoogle Scholar
  553. Wadsworth, P.F., Lewis, D.J., and Heywood, R.: The ultra-structural features of progestagen-induced decidual cells in the rhesus monkey (Macaca mulatta). Contraception 22: 189–198, 1980.PubMedCrossRefGoogle Scholar
  554. Waidl, E.: Die Entstehung der Septen und Furchen der menschlichen Plazenta. Geburtshilfe Frauenheilkd. 23: 757–766, 1963.PubMedGoogle Scholar
  555. Wakuda, K., and Yoshida, Y.: Cytofluorometric nuclear DNA analysis and immunohistochemical study on the proliferative activity of the trophoblasts in human early gestation. Nippon Sanka Fujinka Gakkai Zasshi 42: 1182–1188, 1990.PubMedGoogle Scholar
  556. Wakuda, K., and Yoshida, Y.: DNA ploidy and proliferative characteristics of human trophoblasts. Acta Obstet. Gynecol. Scand. 71: 12–16, 1992.CrossRefGoogle Scholar
  557. Wang, D., Fujii, S., Konishi, I., Nanbu, Y., Iwai, T., Nonogaki, H., and Mori, T.: Expression of c-erbB-2 protein and epidermal growth factor receptor in normal tissues of the female genital tract and in the placenta. Virchows Arch. [A] 420: 385–393, 1992.CrossRefGoogle Scholar
  558. Wanner, A.: Wird bei der Geburtsplacenta des Menschen die Basalplatte von Trophoblastzellen oder Zellen mütterlicher Herkunft überzogen? Acta Anat. (Basel) 63: 545–558, 1966.Google Scholar
  559. Wasmoen, T.L., Loegering, D.A., Coulam, C.B., Gleich, G.J., and Benirschke, K.: Characterization of a pregnancy-associated protein immunochemically similar to the major basic protein of eosinophils. Fed. Proc. 44: 420, 1985.Google Scholar
  560. Wasmoen, T.L., Benirschke, K., and Gleich, G.J.: Demonstration of immunoreactive eosinophil granule major basic protein in the plasma and placentae of non-human primates. Placenta 8: 283–292, 1987a.PubMedCrossRefGoogle Scholar
  561. Wasmoen, T.L., Coulam, C.B., Leiferman, K.M., and Gleich, G.J.: Increase of plasma eosinophil major basic protein levels late in pregnancy predicts onset of labor. Proc. Natl. Acad. Sci. U.S.A. 84: 3029–3032, 1987b.PubMedCrossRefGoogle Scholar
  562. Wasmoen, T.L., Bell, M.P., Loegering, D.A., Gleich, G.J., Prendergast, F.G., and McKean, D.J.: Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J. Biol. Chem. 263: 12559–12563, 1988.PubMedGoogle Scholar
  563. Wasmoen, T.I., McKean, D.J., Benirschke, K., Coulam, C.B., and Gleich, G.J: Evidence of eosinophil granule major basic protein in human placenta. J. Exp. Med. 170: 2051 2063, 1989.Google Scholar
  564. Wasmoen, T.L., Coulam, C.B., Benirschke, K., and Gleich, G.J.: Association of immunoreactive eosinophil major basic protein with placental septa and cysts. Am. J. Obstet. Gynecol. 165: 416–420, 1991.PubMedGoogle Scholar
  565. Watanabe, S.: Studies of endometrial granulocytes in early pregnant decidual tissue by means of double immunofluorescent staining and flow cytometry. Nippon Sanka Fujinka Gakkai Zasshi 39: 972–979, 1987.PubMedGoogle Scholar
  566. Weber, J.: The site of production of gonadotrophin in the placenta at term. Acta Obstet. Gynecol. Scand. 40: 139151, 1961.Google Scholar
  567. Weller, P.F., and Götzl, E.J.: The human eosinophil: roles in host defense and tissue injury. Am. J. Pathol. 100: 793–820, 1980.Google Scholar
  568. Wells, M., Hsi, B.-L., Yeh, C.-J., and Faulk, W.P.: Spiral (uteroplacental) arteries of the human placental bed show the presence of amniotic basement membrane antigens. Am. J. Obstet. Gynecol. 150: 973–977, 1984.PubMedGoogle Scholar
  569. Welsh, A.O., and Enders, A.C.: Light and electron microscopic examination of the mature decidual cells of the rat with emphasis on the antimesometrial decidua and its degeneration. Am. J. Anat. 172: 1–29, 1985.PubMedCrossRefGoogle Scholar
  570. Welsh, A.O., and Enders, A.C.: Chorioallantoic placenta formation in the rat. III. Granulated cells invade the uterine luminal epithelium at the time of epithelial cell death. Biol. Reprod. 49: 38–57, 1993.PubMedCrossRefGoogle Scholar
  571. Weser, H., and Kaufmann, P.: Lichtmikroskopische und histochemische Untersuchungen an der Chorionplatte der reifen menschlichen Placenta. Arch. Gynecol. 225: 15–30, 1978.Google Scholar
  572. Wewer, U.M., Faber, M., Liotta, L.A., and Albrechtsen, R.: Immunochemical and ultrastructural assessment of the nature of pericellular basement membrane of human decidual cells. Lab. Invest. 53: 624–633, 1985.PubMedGoogle Scholar
  573. Wewer, U.M., Faber, M., Liotta, L.A., and Albrechtsen, R.: Correspondence: decidual cells. Lab. Invest. 55: 120–121, 1986.Google Scholar
  574. Wewer, U.M., Albrechtsen, R., Fisher, L.W., Young, M.F., and Termine, J.D.: Osteonectin/SPARC/BM-40 in human decidua and carcinoma, tissues characterized by de novo formation of basement membrane. Am. J. Pathol. 132: 345355, 1988.Google Scholar
  575. Wieloch, J.: Beitrag zur Kenntnis des Baues der Placenta. Arch. Gynäkol. 118: 112–119, 1923.CrossRefGoogle Scholar
  576. Wiese, K.-H.: Licht-und elektronenmikroskopische Untersuchungen an der Chorionplatte der reifen menschlichen Plazenta. Arch. Gynecol. 218: 243–259, 1975.Google Scholar
  577. Wigger, H.J.: Villous fibrinoid of the placenta: result of holocrine secretion of the cytotrophoblast. Am. J. Pathol. 86: 8a, 1977.Google Scholar
  578. Wigglesworth, J.S.: Morphological variations in the insufficient placenta. J. Obstet. Gynaecol. Br. Commonw. 71: 871–884, 1964.PubMedCrossRefGoogle Scholar
  579. Wigglesworth, J.S.: Vascular anatomy of the human placenta and its significance for placental pathology. J. Obstet. Gynäkol. Br. Commonw. 76: 979–989, 1969.CrossRefGoogle Scholar
  580. Wilkin, P.: Morphogenese. In, Le Placenta Humain. J. Snoeck, ed., pp. 23–70. Masson, Paris, 1958.Google Scholar
  581. Winkler, F.N.: Zur Kenntnis der menschlichen Plazenta. Arch. Gynecol. 4: 238–265, 1872.Google Scholar
  582. Wislocki, G.B.: The histology and cytochemistry of the basal plate and septa placentae of the normal human placenta delivered at full term. Anat. Rec. 109: 359, 1951.CrossRefGoogle Scholar
  583. Wislocki, G.B., and Streeter, G.L.: On the placentation of the macaque (Macaca mulatta) from the time of implantation until the formation of the definitive placenta. Contrib. Embryol. Carnegie Instit. 27: 1–66, 1938.Google Scholar
  584. Witter, F.R., and Sanders, R.C.: Maternal hemorrhage into the amniotic sac producing an apparent umbilical cord mass on sonogram. Am. J. Obstet. Gynecol. 155: 649–651, 1986.PubMedGoogle Scholar
  585. Wolf, H.K., and Michalopoulos, G.K.: Proliferating cell nuclear antigen in human placenta and trophoblastic disease. Pediatr. Pathol. 12: 147–154, 1992.PubMedCrossRefGoogle Scholar
  586. Wolska, W.: Über die von Ruge beschriebene Vaskularisation der Serotina. Thesis, Bern, 1888.Google Scholar
  587. Wu, W.X., Brooks, J., Millar, M.R., Ledger, W.L., Saunders, P.T., Glasier, A.F., and McNeilly, A.S.: Localization of the sites of synthesis and action of prolactin by immunocytochemistry and in-situ hybridization within the human uteroplacental unit. J. Mol. Endocrinol. 7: 241–247, 1991.PubMedCrossRefGoogle Scholar
  588. Wynn, R.M.: Electron microscopy of the developing decidua. Fertil. Steril. 16: 16–26, 1965.PubMedGoogle Scholar
  589. Wynn, R.M.: Fetomaternal cellular relations in the human basal plate: an ultrastructural study of the placenta. Am. J. Obstet. Gynecol. 97: 832–850, 1967a.PubMedGoogle Scholar
  590. Wynn, R.M.: Intra-uterine devices: effects on ultrastructure of human endometrium. Science 156: 1508–1510, 1967b.PubMedCrossRefGoogle Scholar
  591. Wynn, R.: Ultrastructural development of the human decidua. Am. J. Obstet. Gynecol. 118: 652–670, 1974.PubMedGoogle Scholar
  592. Wynn, R.M.: Fine structure of the placenta. In, The Placenta and its Maternal Supply Line. P. Gruenwald, ed., pp. 5679. Medical Technical Publications, Lancaster, 1975.Google Scholar
  593. Yeh, I., O’Connor, D.M., and Kurman, R.J.: Further immunocytochemical characterization of intermediate trophoblast. Mod. Pathol. 1: 106A, 1988.Google Scholar
  594. Yeh, I., O’Connor, D.M., and Kurman, R.J.: Vacuolated cytotrophoblast: a sub-population of trophoblast in the chorion laeve. Placenta 10: 429–438, 1989.PubMedCrossRefGoogle Scholar
  595. Yeh, I.T., O’Connor, D.M., and Kurman, R.J.: Intermediate trophoblast: further immunocytochemical characterization. Mod. Pathol. 3: 282–287, 1990.PubMedGoogle Scholar
  596. Young, R.H., Kurman, R.J., and Scully, R.E.: Proliferations and tumors of intermediate trophoblast of the placental site. Semin. Diagn. Pathol. 5: 223–237, 1988.PubMedGoogle Scholar
  597. Yuen, B.H., Moon, Y.S., and Shin, D.H.: Inhibition of human chorionic gonadotropin production by prolactin from term human trophoblast. Am. J. Obstet. Gynecol. 154: 336–340, 1986.PubMedGoogle Scholar
  598. Zeng, C.X., and Fu, X.S.: Immunocytochemical localization of human chorionic gonadotropin and placental lactogen in normal placentae. Chung Hua Fu Chan Ko Tsa Chih 26: 155–157, 188, 1991.Google Scholar
  599. Zhemkova, Z.P.: Sex chromatin in human placenta. Arkh. Anat. Histol. Embriol. 39: 24–32, 1960.Google Scholar
  600. Zhou, Y., Damsky, C.H., Chiu, K., Roberts, J.M., and Fisher, S.J.: Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Invest. 91: 950–960, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Peter Kaufmann
    • 2
  1. 1.University Medical CenterUniversity of California, San DiegoSan DiegoUSA
  2. 2.Institut für Anatomie der Medizinischen FakultätRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations