Placental Membranes

  • Kurt Benirschke
  • Peter Kaufmann


The “chorion laeve” is usually taken to be synonymous with “membranes.” It represents the “bag of waters” that encloses the fetus and is distinct from the “chorion frondosum,” which is the actual placcental tissue. The membranes normally insert at the edge of the placenta. They contain the amnionic fluid and the fetus. Membranes rupture during delivery owing to stretching or the mechanical force of the accoucheur. Several distinct layers are present in the membranes, and the structure and function of the membranes have received considerable attention primarily because of an interest in the turnover of the water they contain. Enzymatic activity of the membranes during the initiation of labor has been of additional interest. Most recently, the composition of the various extracellular connective tissue components has come under scrutiny.


Amniotic Fluid Embolism Human Amnion Placental Membrane Amniotic Band Meconium Staining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovich, D.R., and Gray, E.S.: Physiologic fetal defecation in midpregnancy. Obstet. Gynecol. 60: 294–296, 1982.PubMedGoogle Scholar
  2. Akle, C.A., Adinolfi, M., Welsh, K.I., Leibowitz, S., and McColl, I.: Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005, 1981.PubMedGoogle Scholar
  3. Alger, L.S., Kisner, H.J., and Nagey, D.A.: The presence of a meconium-like substance in second-trimester amniotic fluid. Am. J. Obstet. Gynecol. 150:380–385, 1984.PubMedGoogle Scholar
  4. Allen, R.: The significance of meconium in midtrimes-ter genetic amniocentesis. Am. J. Obstet. Gynecol. 152: 413–417, 1985.PubMedGoogle Scholar
  5. Altshuler, G., and Hyde, S.: Meconium induced vasoconstriction: A potential cause of cerebral and other fetal hypoperfusion and of poor pregnancy outcome. J. Child Neurol. 4:137–142, 1989.PubMedGoogle Scholar
  6. Altshuler, G., and McAdams, A.J.: The role of the placenta in fetal and perinatal pathology. Am. J. Obstet. Gynecol. 113:616–626, 1972.PubMedGoogle Scholar
  7. Al-Zaid, N.S., Bou-Resli, M.N., and Goldspink, G.: Bursting pressure and collagen content of fetal membranes. Bit. J. Obstet. Gynaecol. 87:227–229, 1980.Google Scholar
  8. Anderson, H.C., Merker, P.C., and Fogh, J.: Formation of tumors containing bone after intramuscular injection of transformed human amnion cells (FL) into cortisone treated mice. Am. J. Pathol. 44:507–519, 1964.PubMedGoogle Scholar
  9. Aplin, J.D., and Allen, T.D.: The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J. Cell Sci. 79:119–136, 1985.PubMedGoogle Scholar
  10. Ariel, I.B., and Landing, B.H.: A possible distinctive vacuolar change of the amniotic epithelium associated with gastroschisis. Pediatr. Pathol. 2:283–289, 1985.Google Scholar
  11. Armstrong, W.D., Wilt, J.C., and Pritchard, E.X: Vacuolation in the human amnion cell studied by time-lapse photography and electron microscopy. Am. J. Obstet. Gynecol. 102:932–948, 1968.PubMedGoogle Scholar
  12. Artal, R., Sokol, R.J., Neuman, M., Burstein, A.H., and Stojkov, J.: The mechanical properties of prematurely and non-prematurely ruptured membranes: methods and preliminary results. Am. J. Obstet. Gynecol. 125: 655–659, 1976.PubMedGoogle Scholar
  13. Artal, R., Burgeson, R.E., Hobel, C.J., and Hollister, D.: An in vitro model for the study of enzymatically ediated biomechanical changes in the chorioamniotic membranes. Am. J. Obstet. Gynecol. 133:656–659, 1979.PubMedGoogle Scholar
  14. Arts, N.F.T.: Investigations on the vascular system of the placenta. Part II. The maternal vascular system. Am. J. Obstet. Gynecol. 82:159–166, 1961.PubMedGoogle Scholar
  15. Alalia, A., and Page, I.: Ehlers-Danlos syndrome type III in pregnancy. Obstet. Gynecol. 71:508–509, 1988.Google Scholar
  16. Azegami, M., and Mori, N.: Amniotic fluid embolism and leukotrienes. Am. J. Obstet. Gynecol. 155:1119–1124, 1986.PubMedGoogle Scholar
  17. Bain, A.D., Smith, I.I., and Gauld, I.K.: Newborn after prolonged leakage of liquor amnii. Br. Med. J. 2:598–599, 1964.PubMedGoogle Scholar
  18. Ballantyne, J.W.: Manual of Antenatal Pathology and Hygiene. The Embryo. Wm. Greene & Sons, Edinburgh, 1904.Google Scholar
  19. Barabas, A.P.: Ehlers-Danlos syndrome: associated with prematurity and premature rupture of foetal membranes; possible increase in incidence. Br. Med. J. 2:682–684, 1966.PubMedGoogle Scholar
  20. Barss, V.A., Benacerraf, B.R., and Frigoletto, F.D.: Second trimester oligohydramnios, a predictor of poor fetal outcome. Obstet. Gynecol. 64:608–610, 1984.PubMedGoogle Scholar
  21. Bartels, H., and Wang, T.: Intercellular junctions in the human fetal membranes. Anat. Embryol. (Berl.) 166: 103–120, 1983.Google Scholar
  22. Bartman, J., and Blanc, W.A.: Ultrastructure of human fetal placental membranes in chorio-amnionitis and meconium exposure. Obstet. Gynecol. 35:554–561, 1970.PubMedGoogle Scholar
  23. Bartman, J., and Driscoll, S.G.: Amnion nodosum and hypoplastic cystic kidneys: an electron microscopic and microdissection study. Obstet. Gynecol. 32:700–705, 1968.PubMedGoogle Scholar
  24. Battaglia, F.C., Hellegers, A.E., Meschia, G., and Barron, D.H.: In vitro investigations of the human choion as a membrane system. Nature 196:1061–1063, 1962.PubMedGoogle Scholar
  25. Battaglia, F.C., Behrman, R.E., Meschia, G., Seeds, A.E., and Bruns, P.D.: Clearance of inert molecules, Na, and CI ions across the primate placenta. Am. J. Obstet. Gynecol. 102:1135–1143, 1968.PubMedGoogle Scholar
  26. Bautzmann, H.: Fruchthüllenmotorik und Embryoki-nese: Ihre Natur und ihre Bedeutung für eine physiologische Embryonalentwicklung bei Tier und Mensch. Arch. Gynäkol. 187:519–545, 1956.PubMedGoogle Scholar
  27. Bautzmann, H., and Hertenstein, C.: Zur Histogenèse und Histologie des menschlichen fetalen und Neuge-borenen-Amnion. Z. Zellforsch. 45:589–611, 1957.PubMedGoogle Scholar
  28. Bautzmann, H., and Schröder, R.: Studien zur funktionellen Histologie und Histogenèse des Amnions beim Hühnchen und beim Menschen. Z. Anat. Ent-wicklungsgesch. 117:166–214, 1953.Google Scholar
  29. Bautzmann, H., and Schröder, R.: Vergleichende Studien über Bau und Funktion des Amnions. Neue Befunde am menschlichen Amnion mit Einschluß seiner freien Bindegewebs- oder sog. Hofbauerzellen. Z. Anat. 119:7–22, 1955.Google Scholar
  30. Bautzmann, H., Schmidt, W., and Lemburg, P.: Experimental electron- and light-microscopic studies on the function of the amnion-apparatus of the chick, the cat and man. Anat. Anz. 108:305–310, 1960.PubMedGoogle Scholar
  31. Bedin, M., Weil, D., Fournier, T., Cedard, L., and Frezal, J.: Biochemical evidence for non-inactivation of the steroid sulfatase locus in human placenta and fibroblasts. Hum. Genet. 59:256–258, 1981.PubMedGoogle Scholar
  32. Beller, F.K., Douglas, G.W., Debrovner, C.H., and Robinson, R.: The fibrinolytic system in amniotic fluid embolism. Am. J. Obstet. Gynecol. 87:48–55, 1963.Google Scholar
  33. Bendon, R.W., and Ray, M.B.: The pathologic findings of the fetal membranes in very prolonged amniotic fluid leakage. Arch. Pathol. Lab. Med. 110:47–50, 1986.PubMedGoogle Scholar
  34. Benedetti, W.L., Sala, M.A., and Alvarez, H.: Histo-chemical demonstration of enzymes in the umbilical cord and membranes of human term pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 3:185–189, 1973.Google Scholar
  35. Benirschke, K.: Effects of placental pathology on the embryo and the fetus. In Handbook of Teratology. Vol. 3. J.G. Wilson and F.C. Fraser, eds. pp. 79–115. Plenum Press, New York, 1977.Google Scholar
  36. Bieber, F.R., Mostoufi-Zadeh, M., Birnholz, J.C., and Driscoll S.G.: Amniotic band sequence associated with ectopia cordis in one twin. J. Pediatr. 105:817–19, 1084.Google Scholar
  37. Blanc, W. A.: Vernix granulomatosis of amnion (“amnion nodosum”) in oligohydramnios: lesion associated with urinary anomalies, retention of dead fetuses, and prolonged leakage of amniotic fluid. N.Y. J. Med. 61: 1492–1496, 1961.Google Scholar
  38. Blanc, W.A., Apperson, J.W., and McNally, J.: Pathology of the newborn and of the placenta in oligohyram-ios. Bull. Sloane Hosp. Women 7:51–64, 1962.Google Scholar
  39. Blanc, W.A., Mattison, D.R., Kane, R., and Chauhan, P.: L.S.D., intrauterine amputations, and amniotic-band syndrome. Lancet 2:158–159, 1971.PubMedGoogle Scholar
  40. Bohle, A., and Hienz, H.A.: Zellkernmorphologische Geschlechtsbestimmung an der Placenta. Klin. Wochenschr. 34:981–985, 1956.PubMedGoogle Scholar
  41. Boll, H.U., Forssmann, W.G., and Taugner, R.: Studies on the juxtaglomerular apparatus. IV. Freeze-frac-turing of membrane surfaces. Cell Tissue Res. 161:459–469, 1975.PubMedGoogle Scholar
  42. Borlum, K.-G.: Second-trimester chorioamniotic separation and amniocentesis. Eur. J. Obstet. Gynecol. Reprod. Biol. 30:35–38, 1989.PubMedGoogle Scholar
  43. Bou-Resli, M.N., Al-Zaid, N.S., and Ibrahim, M.E.A.: Full-term and prematurely ruptured fetal membranes. Cell Tissue Res. 220:263–278, 1981.PubMedGoogle Scholar
  44. Bourne, G.L.: The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 79: 1070–1073, 1960.PubMedGoogle Scholar
  45. Bourne, G. L.: The Human Amnion and Chorion. Lloyd-Luke, London, 1962.Google Scholar
  46. Bourne, G.L., and Lacy, D.: Ultra-structure of human amnion and its possible relation to the circulation of amniotic fluid. Nature 168:952–954, 1960.Google Scholar
  47. Boyd, J.D., and Hamilton, W.J.: The Human Placenta. Heffer & Sons, Cambridge, 1970.Google Scholar
  48. Breed, A., Mantingh, A., Govaerts, L., Booger, A., Anders, G., and Laurini, R.: Abnormal karyotype in the chorion, not confirmed in a subsequently aborted fetus. Prenat. Diagn. 6:375–377, 1986.PubMedGoogle Scholar
  49. Brown, D.R., Doshi, N., and Taylor, P.M.: Oligohydramnios and fatal pulmonary hypoplasia without amnion nodosum. J. Reprod. Med. 20:293–296, 1978.PubMedGoogle Scholar
  50. Brusis, E., Nitsch, B., and Wengeler, H.: Fruchtwasser und Amnion. In, Klinik der Frauenheilkunde und Geburtshilfe. G. Döderlein & K.H. Wulf, eds. Vol. 4, pp. 667–750. Urban & Schwarzenberg, Munich, 1975.Google Scholar
  51. Bühler, F.R.: Randbildungen der menschlichen Placenta. Acta Anat. (Basel) 59:47–76, 1964.Google Scholar
  52. Bullen, B., and Bloxam, D.: Human placental tropho-blast cultured on amnion basement membrane: A model for transport studies. Presented at the 11th Rochester Trophoblast Conference with the European Placenta Group, Rochester, 1988.Google Scholar
  53. Butler, W.J., Schwartz, C.E., Sauer, S.M., Wilson, J.T., and McDonough, P.G.: Discordance in deoxyribonucleic acid analysis of fetus and trophoblast. Am. J. Obstet. Gynecol. 158:642–645, 1988.PubMedGoogle Scholar
  54. Byrne, D.L., and Gau, G.: In utero meconium aspiration: an unpreventable cause of neonatal death. Br. J. Obstet. Gynaecol. 94:813–814, 1987.PubMedGoogle Scholar
  55. Cane, F.E.: The functions of the amnion. Lancet 2: 1274, 1888.Google Scholar
  56. Casey, M.L., Delgadillo, M., Cox, K.A., Niesert, S., and MacDonald, P.C.: Inactivation of prostaglandins in human decidua vera (parietalis) tissue: substrate specificity of prostaglandin dehydrogenase. Am. J. Obstet. Gynecol. 160:3–7, 1989.PubMedGoogle Scholar
  57. Charpin, C., Kopp, F., Pourreau-Schneider, N., Lissitzky, J.C., Lavaut, M.N., Martin, P.M., and Toga, M.: Laminin distribution in human decidua and immature placenta: an immunoelectron microscopic study (avidin-biotin-peroxidase complex method). Am. J. Obstet. Gynecol. 151:822–826, 1985.PubMedGoogle Scholar
  58. Chaurasia, B.D.: Amniochorionic bands and adhesions with fetal deformities. Anat. Anz. 144:158–162, 1978.PubMedGoogle Scholar
  59. Chez, R.A., Josimovich, J.B., and Schultz, S.G.: The transfer of human placental lactogen across isolated amnion-chorion. Gynecol. Invest. 1:312–318, 1970.Google Scholar
  60. Christiaens, G.C.M.L., van Baarlen, J., Huber, J., and Leschot, N.J.: Fetal limb constriction: a possible complication of CVS. Prenat. Diagn. 9:67–71, 1989.PubMedGoogle Scholar
  61. Clark, S.L.: Arachidic acid metabolites and the pathophysiology of amniotic fluid embolism. Semin. Reprod. Endocrinol. 3:253–257, 1985.Google Scholar
  62. Clark, S.L.: Amniotic fluid embolism and leukotrienes. Am. J. Obstet. Gynecol. 158:681, 1988.PubMedGoogle Scholar
  63. Clark, S.L., Pavlova, Z., Greenspoon, J., Horenstein, J., and Phelan, J.P.: Squamous cells in the maternal pulmonary circulation. Am. J. Obstet. Gynecol. 154: 104–106, 1986.PubMedGoogle Scholar
  64. Clark, S.L., Cotton, D.B., Gonik, B., Greenspoon, J., and Phelan, J.P.: Central hemodynamic alterations in amniotic fluid embolism. Am. J. Obstet. Gynecol. 158:1124–1126, 1988.PubMedGoogle Scholar
  65. Clayton, E.M., Waller, D.H., and Foster, E.B.: The significance of heme pigments in amniotic fluid. Obstet. Gynecol. 34:641–647, 1969.PubMedGoogle Scholar
  66. Clement, D., Schifrin, B.S., and Kates, R.B.: Acute oligohydramnios in postdate pregnancy. Am. J. Obstet. Gynecol. 157:884–886, 1987.PubMedGoogle Scholar
  67. Corridan, M., Kendall, E.D., and Begg, J.D.: Cord entanglement causing premature placental separation and amniotic fluid embolism: case report. Br. J. Obstet. Gynaecol. 87:935–940, 1980.PubMedGoogle Scholar
  68. Coston, H.R.: Report of a case of ichthyosis fetalis; placenta and membranes involved. Am. J. Obstet. Dis. Women Child. 58:650–654, 1908.Google Scholar
  69. Crane, J.P., and Cheung, S.W.: An embryonic model to explain cytogenetic inconsistencies observed in chorionic villus versus fetal tissue. Prenat. Diagn. 8:119–129, 1988.PubMedGoogle Scholar
  70. Danforth, D.N., and Hull, R.W.: The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion. Am. J. Obstet. Gynecol. 75:536–550, 1958.PubMedGoogle Scholar
  71. Danforth, D.N., Elin, T.W., and Stanes, M.N.: Studies on fetal membranes. I. Bursting tension. Am. J. Obstet. Gynecol. 65:480–490, 1953.Google Scholar
  72. Davis, J.R., and Penny, R.J.: Improved fluorescence method for identifying sex chromatin in formalin-fixed tissue. Am. J. Clin. Pathol. 75:731–733, 1981.PubMedGoogle Scholar
  73. Davis, R.O., Philips III, J.B., Harris, B.A., Wilson, E.R., and Huddleston, J.F.: Fatal meconium aspiration syndrome occurring despite airway management considered appropriate. Am. J. Obstet. Gynecol. 151: 731–736, 1985.PubMedGoogle Scholar
  74. Davis, G.E., Blaker, S.N., Engvall, E., Varon, S., Manthorpe, M., and Gage, F.H.: Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science 236:1106–1109, 1987.PubMedGoogle Scholar
  75. Déglon, P.: Lésions placentaires et foetales dans 100 cas d’oligohydramnios. Thesis, University of Lausanne, 1978.Google Scholar
  76. De Ikonicoff, L.K., and Cedard, L.: Localization of human chorionic gonadotropic and somatomam-motropic hormones by the peroxidase immuno-enzymologic method in villi and amniotic epithelium of human placenta (from six weeks to term). Am. J. Obstet. Gynecol. 116:1124–1132, 1973.PubMedGoogle Scholar
  77. DeMyer, W., and Baird, I.: Mortality and skeletal malformations from amniocentesis and oligohydramnios in rats: cleft palate, clubfoot, microstomia, and adac-tyly. Teratology 2:33–38, 1969.PubMedGoogle Scholar
  78. Dominguez, R., Segal, A.J., and O’Sullivan, J.A.: Leukocytic infiltration of the umbilical cord: manifestation of fetal hypoxia due to reduction of blood flow in the cord. J.A.M.A. 173:346–349, 1960.Google Scholar
  79. Donskikh, N.V.: New views on vascularity of the human amnion. Akus. Ginekol. 33:93–94, 1957 (Russian).Google Scholar
  80. Dooley, S.L., Pesavento, D.J., Depp, R., Socol, M.L., Tamura, R.K., and Wiringa, K.S.: Meconium below the vocal cords at delivery: Correlation with intrapartum events. Am. J. Obstet. Gynecol. 153:767–770, 1985.PubMedGoogle Scholar
  81. Editorial: Anyone for amnion ? Lancet 1:719, 1984.Google Scholar
  82. Enders, A.C., and King, B.F.: Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am. J. Anat. 181:327–340, 1988.PubMedGoogle Scholar
  83. Evaldson, G.R., Larsson, B., and Jiborn, H.: Is collagen content reduced when the fetal membranes rupture? A clinical study of term and prematurely ruptured membranes. Gynecol. Obstet. Invest. 24:92–94, 1987.PubMedGoogle Scholar
  84. Falciglia, H.S.: Failure to prevent meconium aspiration syndrome. Obstet. Gynecol. 71:349–353, 1988.PubMedGoogle Scholar
  85. Fitch, N., and Lachance, R.C.: The pathogenesis of Potter’s syndrome of renal agenesis. Can. Med. Assoc. J. 107:653–656, 1972.PubMedGoogle Scholar
  86. Forssmann, W.G., and Taugner, R.: Studies on the juxtaglomerular apparatus. V. The juxtaglomerular apparatus in Tupaia with special reference to intercellular contacts. Cell Tissue Res. 177:291–305, 1977.PubMedGoogle Scholar
  87. Fort, A.T.: Prenatal intrusion into the amnion. Am. J. Obstet. Gynecol. 110:432–455, 1971.PubMedGoogle Scholar
  88. Foster, H.W., and Das, S.K.: Study of lipids in human amnion and chorion. Am. J. Obstet. Gynecol. 149: 670–673, 1984.PubMedGoogle Scholar
  89. Fox, H., and Butler-Manuel, R.: A teratoma of the placenta. J. Pathol. Bacteriol. 88:137–140, 1964.PubMedGoogle Scholar
  90. Franqoual, J., Lindenbaum, A., Benattar, C., Dehan, M., Cohen, H., and Leluc, R.: Importance of simultaneous determination of coproporphyrin and hemoglobin in contaminated amniotic fluid. Clin. Chem. 32:877–878, 1986.Google Scholar
  91. Franqué, O.v.: Zur Kenntnis der Amnionanomalien. Monatsschrift Geburtshilfe Gynäkol. 6:36–41, 1897.Google Scholar
  92. Fujikura, T., and Klionsky, B.: The significance of meconium staining. Am. J. Obstet. Gynecol. 121: 45–50, 1975.PubMedGoogle Scholar
  93. Garcia, A.G.P., Consorte, S.M., Lana, A.M.A., and Friede, R.: Amnion nodosum and congenital ichthyosis. Am. J. Clin. Pathol. 67:567–572, 1977.PubMedGoogle Scholar
  94. Garza, A., Cordero, J.F., and Mulinare, J.: Epidemiology of the early amnion rupture spectrum of defects. Am. J. Dis. Child. 142:541–544, 1988.PubMedGoogle Scholar
  95. Golbus, M.S., and Stephens, J.D.: Prenatal diagnosis, chromosomal abnormalities and neural tube defects. Clin. Perinatol. 6:245–254, 1979.PubMedGoogle Scholar
  96. Gräfe, M.J., and Benirschke, K.: Ultrastructural study of the amniotic epithelium in a case of gastroschisis. Pediatr. Pathol. 10:95–101, 1990.PubMedGoogle Scholar
  97. Griffiths, D.M., and Bürge, D.M.: When is meconium stained liquor actually bile stained vomitus? Arch. Dis. Child. 63:201–202, 1988.PubMedGoogle Scholar
  98. Grimes, L.D., and Cassady, G.: Fetal gastrointestinal obstruction. Am. J. Obstet. Gynecol. 106:1196–1200, 1970.PubMedGoogle Scholar
  99. Grosser, O.: Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. J.F Bergmann, Munich, 1927.Google Scholar
  100. Guidotti, R.J., Grimes, D.A., and Cates, W.: Fatal amniotic fluid embolism during legally induced abortion, United States, 1972 to 1978. Am. J. Obstet. Gynecol. 141:257–261, 1981.PubMedGoogle Scholar
  101. Haddad, F.S.: Amniotic fluid embolism: A review of the literature and a ease report with recovery. J. Indian Med. Assoc. 17:76–79, 1985.Google Scholar
  102. Hamilton, W.J., and Boyd, J.D.: Development of the human placenta in the first three months of gestation. J. Anat. 94:297–328, 1960.PubMedGoogle Scholar
  103. Hamilton, W.J., and Boyd, J.D.: Trophoblast in human utero-placental arteries. Nature 212:906–908, 1966.PubMedGoogle Scholar
  104. Hankins, G.D.V., Rowe, J., Quirk, J.G., Trubey, R., and Strickland, D.M.: Significance of brown and/or green amniotic fluid at the time of second trimester genetic amniocentesis. Obstet. Gynecol. 64:353–358, 1984.PubMedGoogle Scholar
  105. Harrison, K.B., and Warburton, D.: Preferential X-chromosome activity in human female placental tissue. Cytogenet. Cell Genet. 41:163–168, 1986.PubMedGoogle Scholar
  106. Hartwig, N.G., Vermej-Keers, C.H.R., de Vries, H.E., Kagie, M., and Kragt, H.: Limb body wall malformation complex: An embryologie etiology? Hum. Pathol. 20:1071–1077, 1989.PubMedGoogle Scholar
  107. Hebertson, R.M., Hammond, M.E., and Bryson, M.J.: Amniotic epithelial ultrastructure in normal, poly-hydramnic, and Oligohydramnie pregnancies. Obstet. Gynecol. 68:74–79, 1986.PubMedGoogle Scholar
  108. Hempel, E.: Die ultrastrukturelle Differenzierung des menschlichen Amnionepithels unter besonderer Berücksichtigung des Nabelstranges. Anat. Anz. 132:356–370, 1972.PubMedGoogle Scholar
  109. Herendael, B.J.v., Oberti, C., and Brosens, I.: Microanatomy of the human amniotic membranes: a light microscopic, transmission, and scanning electron microscopic study. Am. J. Obstet. Gynecol. 131:872–880, 1978.PubMedGoogle Scholar
  110. Hertig, A.T.: On the development of the amnion and exocoelomic membrane in the previllous human ovum. Yale J. Biol. Med. 18:107–115, 1945.Google Scholar
  111. Hertig, A.T.: Human Trophoblast. Charles C. Thomas. Springfield, II., 1968.Google Scholar
  112. Hertig, A.T., and Rock, J.: Two human ova of the previllous stage having an ovulation age of about eleven and twelve days respectively. Contrib. Embryol. Carnegie Inst. 29:127–156, 1941.Google Scholar
  113. Hessle, H., and Engvall, E.: Type VI collagen. J. Biol. Chem. 259:3955–3961, 1984.PubMedGoogle Scholar
  114. Hessle, H., Sakai, L.Y., Hollister, D.W., Burgeson, R.E., and Engvall, E.: Basement membrane diversity detected by monoclonal antibodies. Differentiation 26:49–54, 1984.PubMedGoogle Scholar
  115. Higginbottom, M.C., Jones, K.L., Hall, B.D., and Smith, D.W.: The amniotic band disruption complex: Timing of amnion rupture and variable spectra of consequent defects. J. Pediatr. 95:544–549, 1979.PubMedGoogle Scholar
  116. Hinrichsen, K.: Embryogenese, äußere Körperform und Nabelbildung. In Humanembryologie. K. Hinrichsen, ed. Thieme, Stuttgart, 1990 (in press).Google Scholar
  117. Hogge, W.A., Schonberg, S.A., and Golbus, M.S.: Prenatal diagnosis by chorionic villus sampling: lessons of the first 600 cases. Prenat. Diagn. 5:393–400, 1985.PubMedGoogle Scholar
  118. Hong, C.Y., and Simon, M.A.: Amniotic bands knotted about umbilical cord: a rare cause of fetal death. Obstet. Gynecol. 22:667–670, 1963.PubMedGoogle Scholar
  119. Houben, J.J., and Huygens, R.: Subcellular effects of experimental oligohydramnios on the developing rat limb. Teratology 36:107–116, 1987.PubMedGoogle Scholar
  120. Hoyes, A.D.: Fine structure of human amniotic epithelium in early pregnancy. J. Obstet. Gynaecol. Br. Com-monw. 75:949–962, 1968.Google Scholar
  121. Hoyes, A.D.: Ultrastructure of the epithelium of human umbilical cord. J. Anat. 103:388–389, 1968.Google Scholar
  122. Hoyes, A.D.: Ultrastructure of the human mesenchymal layers of the human chorion in early pregnancy. Am. J. Obstet. Gynecol. 106:557–566, 1970.PubMedGoogle Scholar
  123. Hoyes, A.D.: Ultrastructure of the mesenchymal layers of the human chorion laeve. J. Anat. 109:17–30, 1971.PubMedGoogle Scholar
  124. Hoyes, A.D.: Fine structure of human amnionic epithelium following short term preservations in vitro. J. Anat. 111:43–54, 1972.PubMedGoogle Scholar
  125. Ibrahim, M.E.A., Bou-Resli, M.N., Al-Zaid, N.S., and Bishay, L.F.: Intact fetal membranes: morphological prédisposai to rupture. Acta Obstet. Gynecol. Scand. 62:481–485, 1983.Google Scholar
  126. Itskovitz, J., Abramovici, H. and Brandes, J.M.: Oligo-hydramnion, meconium and perinatal death concurrent with indomethacin treatment in human pregnancy. J. Reprod. Med. 24:137–140, 1980.PubMedGoogle Scholar
  127. Jonas, E.G., and Caunt, A.E.: Clinical evaluation of human amnion tissue culture. Br. Med. J. 1:898–901, 1965.PubMedGoogle Scholar
  128. Joseph, T.J., and Vogt, P.J.: Placental teratomas. Obstet. Gynecol. 41:574–578, 1973.PubMedGoogle Scholar
  129. Kalousek, D.: Amniotic band syndrome in previable fetuses. Pediatr. Pathol. 7:488, 1987.Google Scholar
  130. Kalousek, D.K., and Bamforth, S.: Amnion rupture sequence in previable fetuses. Am. J. Med. Genet. 31: 63–73, 1988.PubMedGoogle Scholar
  131. Kalousek, D.K., and Dill, F.J.: Chromosomal mosaicism confined to the placenta in human conceptions. Science 221:665–667, 1983.PubMedGoogle Scholar
  132. Kanayama, N., Terao, T., Kawashima, Y., Horiuchi, K., and Fujimoto, D.: Collagen types in normal and prematurely ruptured amniotic membranes. Am. J. Obstet. Gynecol. 153:899–903, 1985.PubMedGoogle Scholar
  133. Kaplan, C.: Placental pathology in perinatal disease. In, Gynecology and Obstetrics, Vol. 3. J.J. Sciarra, ed., Chapter 106, pp. 1–21. Harper & Row, Hagerstown, 1980.Google Scholar
  134. Kaplan, M.: Fetal breathing movements: an update for the pediatrician. Am. J. Dis. Child. 137:177–181, 1983.PubMedGoogle Scholar
  135. Karimi-Nejad, M.H., Khajavi, H., Gharavi, M.J., and Karimi-Nejad, R.: Neu-Laxova syndrome: report of a case and comments. Am. J. Med. Genet. 28:17–23, 1987.PubMedGoogle Scholar
  136. Karp, L.E., and Schiller, H.S.: Meconium staining of amniotic fluid at midtrimester amniocentesis. Obstet. Gynecol. 50:47s–49s, 1977.Google Scholar
  137. Kaufmann, P.: Entwicklung der Plazenta. In Die Plazenta des Menschen. V Becker, Th.H. Schiebler and F. Kubli, eds. Thieme, Stuttgart, 1981.Google Scholar
  138. Kilbride, H.W., Thibeault, D.W., Yeast, J., Maulik, D., and Grundy, H.O.: Fetal breathing is not a predictor of pulmonary hypoplasia in pregnancies complicated by oligohydramnios. Lancet 1:305–306, 1988.PubMedGoogle Scholar
  139. Kim, Ch.K., Naftolin, F., and Benirschke, K.: Immuno-histochemical studies of the “X cell” in the human placenta with anti-human chorionic gonadotropin and anti-human placental lactogen. Am. J. Obstet. Gynecol. 111:672–676, 1971.PubMedGoogle Scholar
  140. King, B.F.: Developmental changes in the fine structure of rhesus monkey amnion. Am. J. Anat. 157:285–307, 1980.PubMedGoogle Scholar
  141. King, B.F.: Developmental changes in the fine structure of the chorion laeve (smooth chorion) of the Rhesus monkey placenta. Anat. Rec. 200:163–175, 1981.PubMedGoogle Scholar
  142. King, B.F.: Cell surface specializations and intercellular junctions in human amnionic epithelium: an electron microscopic and freeze-fracture study. Anat. Rec. 203:73–82, 1982.PubMedGoogle Scholar
  143. King, B.F.: Distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat. Rec. 212:57–62, 1985.PubMedGoogle Scholar
  144. Kino, Y.: Reductive malformations of the limbs in the rat fetus following amniocentesis. Congen. Anom. (Japan) 12:35–44, 1972.Google Scholar
  145. Kisalus, L.L., Herr, J.C., and Little, C.D.: Immuno-localization of extracellular matrix proteins and collagen synthesis in first-trimester human decidua. Anat. Rec. 218:402–415, 1987.PubMedGoogle Scholar
  146. Klinger, H.P., and Schwarzacher, H.G.: XY/XXY and sex chromatin positive cell distribution in a 60 mm human fetus. Cytogenetics 1:266–290, 1962.PubMedGoogle Scholar
  147. Köhler, H.G.: An unusual case of sirenomelia. Teratology 6:295–302,1972.PubMedGoogle Scholar
  148. Köhler, H.G., and Collins, M.L.: Ligation of the umbilical cord by torn amniotic membrane. J. Obstet. Gynaecol. Br. Commonw. 79:183–184, 1972.PubMedGoogle Scholar
  149. Kratzsch, E., and Grygiel, I.-H.: Über das Vorkommen eines spezifischen Enzyms der Glucuronsäurebildung im menschlichen Amnion. Z. Zellforsch. 123:566–571, 1972.PubMedGoogle Scholar
  150. Küster, J.: Adultes Teratom (“Dermoid”) der Placenta. Arch. Gynäkol. 133:93–99, 1928.Google Scholar
  151. Lage, J.M., Van Marter, L.J. and Bieber, F.R.: Questionable role of amniocentesis in the formation of amniotic bands. J. Reprod. Med. 33:71–73, 1988.PubMedGoogle Scholar
  152. Landing, B. H.: Amnion nodosum: a lesion of the placenta apparently associated with deficient secretion of fetal urine. Am. J. Obstet. Gynecol. 60:1339–1342, 1950a.PubMedGoogle Scholar
  153. Landing, B.H.: The pathogenesis of amniotic-fluid embolism. N. Engl. J. Med. 243:590–596, 1950b.PubMedGoogle Scholar
  154. Laufer, A., Polishuk, W.Z., Boxer, J., and Ganzfried, R.: Studies of amniotic membranes. J. Reprod. Fertil. 12:99–105, 1966.PubMedGoogle Scholar
  155. Lauweryns, J., Bernât, R., Lerut, A., and Detournay, G.: Intrauterine pneumonia. An experimental study. Biol. Neonat. 22:215–231, 1973.Google Scholar
  156. Lavery, J.P., and Miller, C.E: The viscoelastic nature of chorioamniotic membranes. Obstet. Gynecol. 50: 467–472, 1977.PubMedGoogle Scholar
  157. Lavery, J.P., Miller, C.E., and Johns, P.: Effect of meconium on the strength of chorioamniotic membranes. Obstet. Gynecol. 56:711–715, 1980.PubMedGoogle Scholar
  158. Lavery, J.P., Miller, E., and Knight, R.D.: The effect of labor on the rhéologie response of chorioamniotic membranes. Obstet. Gynecol. 60:87–92, 1982.PubMedGoogle Scholar
  159. Leary, O.C., and Hertig, A.T.: Pathogenesis of amniotic fluid embolism. I. Possible placental factors-aberrant squamous cells in placenta. N. Engl. J. Med. 243: 588–590, 1950.PubMedGoogle Scholar
  160. Legge, M.: Dark brown amniotic fluid—identification of contributing pigments. Br. J. Obstet. Gynaecol. 88: 632–634, 1981.PubMedGoogle Scholar
  161. Leivo, I., and Engvall, E.: C3d fragment of complement interacts with laminin and binds to basement membranes of glomerulus and trophoblast. J. Cell Biol. 103:1091–1100, 1986.PubMedGoogle Scholar
  162. Levick, K.: Pregnancy loss and fathers with Ehlers-Danlos syndrome. Lancet ii:1151, 1989.Google Scholar
  163. Linton, G., and Lilford, R.J.: False-negative finding on chorionic villus sampling. Lancet 2:630, 1986.PubMedGoogle Scholar
  164. Liotta, L.A., Lee, C.W., and Morakis, D.J.: New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 11:141–152, 1980.PubMedGoogle Scholar
  165. Lister, U.M.: Ultrastructure of the human amnion, chorion and fetal skin. J. Obstet. Gynaecol. Br. Commonw. 75:327–341,1968.PubMedGoogle Scholar
  166. Lloyd, S.J., Garlid, K.D., Reba, R.C., and Seeds, A.E.: Permeability of different layers of the human placenta to isotopic water. J. Appl. Physiol. 26:274–276, 1969.PubMedGoogle Scholar
  167. Lockwood, C., Ghidini, A., and Romero, R.: Amniotic band syndrome in monozygotic twins: prenatal diagnosis and pathogenesis. Obstet. Gynecol. 71:1012–1016, 1988.PubMedGoogle Scholar
  168. Lockwood, C., Ghidini, A., Romero, R., and Hobbins, J.C.: Amniotic band syndrome: Réévaluation of its pathogenesis. Am. J. Obstet. Gynecol. 160:1030–1033, 1989.PubMedGoogle Scholar
  169. Lubinsky, M., Sujansky, E., Sanger, W., Salyards, P., and Severn, C.: Familial amniotic bands. Am. J. Med. Genet. 14:81–87, 1983.PubMedGoogle Scholar
  170. Lucas, A., Christofides, N.D., Adrian, T.E., Bloom, S.R., and Aynsley-Green, A.: Fetal distress, meconium, and motilin. Lancet 1:718, 1979a.PubMedGoogle Scholar
  171. Lucas, A., Adrian, T.E., Aynsley-Green, A., and Bloom, S.R.: Gut hormones in fetal distress. Lancet 2:968, 1979b.PubMedGoogle Scholar
  172. Luckett, P.: The origin of extraembryonic mesoderm in the early human and rhesus monkey embryos. Anat. Rec. 169:369–370, 1971.Google Scholar
  173. Luckett, W.P.: Amniogenesis in the early human and rhesus monkey embryos. Anat. Rec. 175:375, 1973.Google Scholar
  174. Ludwig, H., Metzger, H., Korte, M., and Wolf, H.: Die freie Oberfläche des Amnionepithels. Rasterelektronenmikroskopische Studie. Arch. Gynäkol. 217: 141–154, 1974.PubMedGoogle Scholar
  175. MacLachlan, T.B.: A method for the investigation of the strength of the fetal membranes. Am. J. Obstet. Gynecol. 91:309–313, 1965.PubMedGoogle Scholar
  176. Mahmoud, E.L., Benirschke, K., Vaucher, Y.E., and Poitras, P.: Motilin levels in term neonates who have passed meconium prior to birth. J. Pediatr. Gastroenterol. Nutr. 7:95–99, 1988.PubMedGoogle Scholar
  177. Mahony, B.S., Filly, R.A., Callen, P.W., and Golbus, M.S.: The amniotic band syndrome: Antenatal sonographic diagnosis and potential pitfalls. Am. J. Obstet. Gynecol. 152:63–68, 1985.PubMedGoogle Scholar
  178. Masson, J.C., Philippe, E., Korn, R., Irrmann, M., Dehalleux, J.M., and Gandar, R.: Amnion nodosum. Rev. Fr. Gynécol. Obstétr. 61:701–707, 1966.Google Scholar
  179. McGregor, J.A., French, J.I., Lawellin, D., Franco-Buff, A., Smith, C., and Todd, J.K.: Bacterial protease-induced reduction of chorioamniotic membrane strength and elasticity. Obstet. Gynecol. 69: 167–174, 1987.PubMedGoogle Scholar
  180. Mercer, L.J., and Brown, L.G.: Fetal outcome with oligohydramnios in the second trimester. Obstet. Gynecol. 67:840–842, 1986.PubMedGoogle Scholar
  181. Metz, J., Weihe, E., and Heinrich, D.: Intercellular junctions in the full term human placenta. I. Syn-cytiotrophoblastic layer. Anat. Embryol. (Berl.) 158: 41–50, 1979.Google Scholar
  182. Meudt, R.: Beitrag zur Festigkeit der menschlichen Eihaut. Gynaecologia 162:430–434, 1966.PubMedGoogle Scholar
  183. Michael, H., Ulbright, T.M., and Brodhecker, C.: Magma reticulare-like differentiation in yolk sac tumor and its pluripotential nature. Mod. Pathol. 1:63A, 1988.Google Scholar
  184. Miller, P.W., Coen, R.W., and Benirschke, K.: Dating the time interval from meconium passage to birth. Obstet. Gynecol. 66:459–462, 1985.PubMedGoogle Scholar
  185. Mitchell, J., Schulman, H., Fleischer, A., Farmakides, G., and Nadeau, D.: Meconium aspiration and fetal acidosis. Obstet. Gynecol. 65:352–355, 1985.PubMedGoogle Scholar
  186. Moessinger, A.C., Blanc, W.A., Byrne, J., Andrews, D., Warburton, D., and Bloom, A.: Amniotic band syndrome associated with amniocentesis. Am. J. Obstet. Gynecol. 141:588–591, 1981.PubMedGoogle Scholar
  187. Muir, R., and Niven, J.S.F.: The local formation of blood pigments. J. Pathol. 41:183–197, 1935.Google Scholar
  188. Mukaida, T., Yoshida, K., Kikyokawa, T., and Soma, H.: Surface structure of the placental membranes. J. Clin. Electron Microsc. 10:447–448, 1977.Google Scholar
  189. Naeye, R.L.: Factors that predispose to premature rupture of the fetal membranes. Obstet. Gynecol. 60: 93–98, 1982.PubMedGoogle Scholar
  190. Nanbu, Y., Fujii, S., Konishi, I., Nonogaki, H., and Mori, T.: CA 125 in the epithelium closely related to the embryonic ectoderm: the periderm and the amnion. Am. J. Obstet. Gynecol. 161:462–467, 1989.PubMedGoogle Scholar
  191. Nickell, K.A., and Stocker, J.T.: Placental teratoma: A case report. Pediatr. Pathol. 7:645–650, 1987.PubMedGoogle Scholar
  192. Novak, R., and Kokomoor, F.: Placental pathology of meconium-stained premature infants. Mod. Pathol. l:7p, 1988 (abstract 35).Google Scholar
  193. Olson, D.M., and Smieja, Z.: Arachidonic acid incorporation into lipids of term human amnion. Am. J. Obstet. Gynecol. 159:995–1001, 1988.PubMedGoogle Scholar
  194. Opitz, H., and Bernoth, E.: Strukturuntersuchungen der menschlichen Eihaut nach vor- und rechtzeitigem Blasensprung. Arch. Gynäkol. 196:435–446, 1962.PubMedGoogle Scholar
  195. Ostrea, E.M., and Naqvi, M.: The influence of gestational age on the ability of the fetus to pass meconium in utero: clinical implications. Acta Obstet. Gynecol. Scand. 61:275–277, 1982.PubMedGoogle Scholar
  196. Panayiotis, G., and Grunstein, S.: Extramembranous pregnancy in twin gestation. Obstet. Gynecol. 53: 34S–35S, 1979.Google Scholar
  197. Paterson, W.G., Grant, K.A., Grant, J.M., and McLean, N.: The pathogenesis of amniotic fluid embolism with particular reference to transabdominal amniocentesis. Eur. J. Obstet. Gynecol. Reprod. Biol. 7:319–324, 1977.PubMedGoogle Scholar
  198. Patten, R.M., Allen, M.V., Mack, L.A., Wilson, D., Nyberg, D., Hirsch, J., and Viamont, T.: Limb-body wall complex: in utero sonographic diagnosis of a complicated fetal malformation. Am. J. Radiol. 146: 1019–1024, 1986.Google Scholar
  199. Patterson, T.J.S.: Amniotic bands. In, Bourne, G.L., ed.: The Human Amnion and Chorion. Lloyd-Luke, London, 1962.Google Scholar
  200. Perlman, M., Tennenbaum, A., Menash, M., and Ornoy, A.: Extramembranous pregnancy: maternal, placental, and perinatal implications. Obstet. Gynecol. 55:34S–37S, 1980.Google Scholar
  201. Petry, G.: Die Bedeutung der Embryonalhüllen bei der Frage nach der Herkunft alkalischer Phosphatase im menschlichen Fruchtwasser. Z. Geburtshilfe Gynäkol. 158:171–180, 1962.PubMedGoogle Scholar
  202. Philippe, E., Dourov, N., Muller, P., and Frühling, L.: Le substratum morphologique de l’embolie amniotique. A propos de deux observations d’incoagulabilité sanguine par embolie amniotique. Ann. Anat. Path. 6:479–496, 1961.Google Scholar
  203. Pilgram, H.: Die Zotten und Karunkeln des menschlichen Amnion. Marburg, 1889. Cited by Blanc et al. (1962).Google Scholar
  204. Platt, L.D., DeVore, G.R., and Gimovsky, M.L.: Failed amniocentesis: the role of membrane tenting. Am. J. Obstet. Gynecol. 144:479–480, 1982.PubMedGoogle Scholar
  205. Poisner, A.M., Wood, G.W., Poisner, R., and Inagami, T.: Localization of renin in trophoblasts in human chorion laeve at term pregnancy. Endocrinology 109: 1150–1155, 1981.PubMedGoogle Scholar
  206. Polano, O.: Beiträge zur Anatomie und Physiologie des menschlichen Amnions. Z. Anat. Entwicklungsgesch. 63:539–553, 1922.Google Scholar
  207. Polet, H.: The effect of hydrocortisone on the membranes of primary human amnion cells in vitro. Exp. Cell Res. 41:316–323, 1966.PubMedGoogle Scholar
  208. Polishuk, W.Z., Kohane, S., and Peranio, A.: The physical properties of fetal membranes. Obstet. Gynecol. 20:204–210, 1962.PubMedGoogle Scholar
  209. Polishuk, W.Z., Kohane, S., and Hadar, A.: Fetal weight and membrane tensile strength. Am. J. Obstet. Gynecol. 20:204–250, 1964.Google Scholar
  210. Polishuk, W.Z., Boxer, I, and Granzfried, R.: Lipid in amniotic membranes. Am. J. Obstet. Gynecol. 91: 61–64, 1965.PubMedGoogle Scholar
  211. Pomerance, W., Biezenski, J.J., Moltz, A., and Goodman, J.: Origin of amniotic fluid lipids. II. Abnormal pregnancy. Obstet. Gynecol. 38:379–382, 1971.PubMedGoogle Scholar
  212. Porreco, R.P., Young, P.E., Resnik, R., Cousins, L., Jones, O.W., Richards, T., Kernahan, C., and Matson, M.: Reproductive outcome following amniocentesis for genetic indications. Am. J. Obstet. Gynecol. 143: 653–660, 1982.PubMedGoogle Scholar
  213. Pritchard, E.T., Armstrong, W.D., and Wilt, J.C.: Examination of lipids from amnion, chorion, and vernix. Am. J. Obstet. Gynecol. 100:289–298, 1968.Google Scholar
  214. Pysher, T.J.: Discordant congenital malformations in monozygous twins. The amniotic band disruption complex. Diagn. Gynecol. Obstet. 2:221–225, 1980.PubMedGoogle Scholar
  215. Queenan, J.T., Thompson, W., Whitfield, C.R., and Shah, S.I.: Amniotic fluid volumes in normal pregnancies. Am. J. Obstet. Gynecol. 114:34–38, 1972.PubMedGoogle Scholar
  216. Randel, S.B., Filly, R.A., Callen, R.W., Anderson, R.L., and Golbus, M.S.: Amniotic sheets. Radiology 166:633–636, 1988.PubMedGoogle Scholar
  217. Rao, C.H.V., Carman, F.R., Chegini, N., and Schultz, G.S.: Binding sites for epidermal growth factor in human fetal membranes. J. Clin. Endocrinol. Metab. 58:1034–1042, 1984.PubMedGoogle Scholar
  218. Rastan, S., Kaufman, M.H., Handyside, A.H., and Lyon, M.F.: X-chromosome inactivation in extraembryonic membranes of diploid parthenogenetic mouse embryos demonstrated by differential staining. Nature 288:172–173, 1980.PubMedGoogle Scholar
  219. Reale, E., Wang, T., Zaccheo, D., Maganza, C., and Pescetto, G.: Junctions on the maternal blood surface of the human placental syncytium. Placenta 1:245–258, 1980.PubMedGoogle Scholar
  220. Redmond, A.D.: Amnion dressing. Lancet 1:902, 1984.PubMedGoogle Scholar
  221. Rehder, H., and Weitzel, H.: Intrauterine amputations after amniocentesis. Lancet 1:382, 1978.PubMedGoogle Scholar
  222. Reisfield, DR.: Congenital defect in the fetal membranes: A condition simulating spontaneous rupture. Bull. Sloane Hosp. Women 4:16–18, 1958.Google Scholar
  223. Resnik, R., Swartz, W.H., Plumer, M.H., Benirschke, K., and Stratthaus, M.E.: Amniotic fluid embolism with survival. Obstet. Gynecol. 47:295–298, 1976.PubMedGoogle Scholar
  224. Robb, S.A., and Hytten, F.E.: Placental glycogen. Br. J. Obstet. Gynaecol. 83:43–53, 1976.PubMedGoogle Scholar
  225. Rogers, B.B., Widness, J.A., Coustan, D.R., and Singer, D.B.: Fetal acidosis and placental pathology. Modern Pathol. 3(1): abstract No. 498, 1990.Google Scholar
  226. Ropers, H.H., Wolff, G., and Hitzeroth, H.W.: Preferential X inactivation in human placenta membranes: is the paternal X inactive in early embryonic development of female mammals? Hum. Genet. 43:265–273, 1978.PubMedGoogle Scholar
  227. Rossant, J., and Croy, B.A.: Genetic identification of tissue of origin of cellular populations within the mouse placenta. J. Embryol. Exp. Morphol. 86:177–189,1985.PubMedGoogle Scholar
  228. Rubovits, W.H., Taft, E., and Neuwelt, F.: The pathologic properties of meconium. Am. J. Obstet. Gynecol. 36:501–505, 1938.Google Scholar
  229. Sala, M.A., and Matheus, M.: Histochemical study of the fetal membranes in the human term pregnancy. Gegenbaurs Morphol. Jahrb. 130:699–705, 1984.Google Scholar
  230. Salazar, H., Kanbour, A.I., and Pardo, M.: Amnion nodosum. Ultrastructure and histopathogenesis. Arch. Pathol. 98:39–46, 1974.PubMedGoogle Scholar
  231. Santiago-Schwarz, F., and Fleit, H.B.: Identification of nonadherent mononuclear cells in human cord blood that differentiate into macrophages. J. Leukocyte Biol. 43:51–59, 1988.PubMedGoogle Scholar
  232. Schindler, P.D.: Nuclear deoxyribonucleic acid (DNA) content, nuclear size and cell size in the human amnion epithelium. Acta Anat. (Basel) 44:273–285, 1961.Google Scholar
  233. Schmidt, W.: Der Feinbau der reifen menschlichen Eihäute. Z. Anat. Entwicklungsgesch. 119:203–222, 1956.PubMedGoogle Scholar
  234. Schmidt, W.: Struktur und Funktion des Amnionepithels von Menschen und Huhn. Z. Zellforsch. 61:642–660, 1963.PubMedGoogle Scholar
  235. Schmidt, W.: Untersuchungen zur Frage des paraplazentaren Stoff transportes beim Menschen. Anat. Anz. 115:161–163, 1965a.Google Scholar
  236. Schmidt, W.: Über den paraplacentaren, fruchtwassergebundenen Stofftransport beim Menschen. I. Histo-chemische Untersuchung der in den Eihäuten angereicherten Stoffe. Z. Anat. Entwicklungsgesch. 124: 321–334,1965b.PubMedGoogle Scholar
  237. Schmidt, W.: Über den paraplacentaren, fruchtwassergebundenen Stofftransport beim Menschen. IL Nachweis der vom Amnion abgegebenen Lipide im Fruchtwasser und im Dünndarm des Keimes. Z. Anat. Entwicklungsgesch. 126:276–288, 1967.PubMedGoogle Scholar
  238. Schmidt, W., Eberhagen, D., and Svejcar, J.: Über den paraplazentaren, fruchtwassergebundenen Stofftransport beim Menschen. III. Quantitative und qualitative Analyse der im Fruchtwasser enthaltenen Stoffe. Z. Anat. Entwicklungsgesch. 135:210–221, 1971.PubMedGoogle Scholar
  239. Schulze, B., Schlesinger, C.H., and Miller, K.: Chromosomal mosaicism confined to chorionic tissue. Prenat. Diagn. 7:451–453, 1987.PubMedGoogle Scholar
  240. Schwarzacher, H.G.: Beitrag zur Histogenèse des menschlichen Amnion. Acta Anat. (Basel) 43:303–311, 1960.Google Scholar
  241. Schwarzacher, H.G., and Klinger, H.P.: Die Entstehung mehrkerniger Zellen durch Amitose in Amnionepithel des Menschen und die Aufteilung des chromosomalen Materials auf deren einzelne Kerne. Z. Zellforsch. 60:741–754, 1963.PubMedGoogle Scholar
  242. Seeds, A.E., Eichhorst, B.C., and Stolee, A.: Factors determining human chorion laeve permeability in vitro. Am. J. Obstet. Gynecol. 128:13–21, 1977.PubMedGoogle Scholar
  243. Seeds, J.W., Cefalo, R.C., and Herbert, W.N.P.: Amniotic band syndrome. Am. J. Obstet. Gynecol. 144:243–248, 1982.PubMedGoogle Scholar
  244. Seidman, J.D., Abbondanzo, S.L., Watkin, W.G., Ragsdale, B., and Manz, H.J.: Amniotic band syndrome: report of two cases and review of the literature. Arch. Pathol. Lab. Med. 113:891–897, 1989.PubMedGoogle Scholar
  245. Sepkowitz, S.: Influence of the legal imperative and medical guidelines on the incidence and management ofthemeconium-stained newborn. Am. J. Dis. Child. 141:1124–1127, 1987.PubMedGoogle Scholar
  246. Shanklin, D.R., and Scott, J.S.: Massive subchorial thrombohaematoma (Breus’ mole). Br. J. Obstet. Gynaecol. 82:476–487, 1975.PubMedGoogle Scholar
  247. Shephard, T.H., Fantel, A.G., Fujinaga, M., and Fitzsimmons, J.: Amniotic band disruption syndrome: why do their faces look alike? Congen. Anom. (Japan) 37:491–492, 1988 (abstract).Google Scholar
  248. Silver, M.M., Thurston, W.A., and Patrick, J.E.: Perinatal pulmonary hyperplasia due to laryngeal atresia. Hum. Pathol. 19:110–113, 1988.PubMedGoogle Scholar
  249. Singh, G., and Singh, S.: Hemorrhage induced by amniocentesis and vascular clamping in the limbs of rat fetuses. Congen. Anom. (Japan) 18:89–93, 1978.Google Scholar
  250. Sinha, A.A.: Ultrastructure of human amnion and amniotic plaques of normal pregnancy. Z. Zellforsch. 122:1–14, 1971.PubMedGoogle Scholar
  251. Skinner, S.J., Campos, G.A., and Liggins, G.C.: Collagen content of human amniotic membranes: effect of gestational length and premature rupture. Obstet. Gynecol. 57:487–489, 1981.PubMedGoogle Scholar
  252. Smadja, A., Hoang Ngoc Minn, and Nguyen, T.L.: Conception nouvelle sur la physiologie de la circulation amniotique. Rev. Fr. Gynecol. 69:111–114, 1974.Google Scholar
  253. Smith, L.A., and Pounder, D.J.: A teratoma-like lesion of the placenta: a case report. Pathology 14:85–87, 1982.PubMedGoogle Scholar
  254. Starck, D.: Embryologie. Thieme, Stuttgart, 1975.Google Scholar
  255. Stark, J., and Kaufmann, P.: Die Basalplatte der reifen menschlichen Placenta. H. Gefrierschnitt-Histochemie. Z. Anat. Entwicklungsgesetz 135:185–201, 1971.Google Scholar
  256. Steiner, P.E., and Lushbaugh, C.C.: Maternal pulmonary embolism by amniotic fluid as cause of obstetric shock and unexpected deaths in obstetrics. J.A.M.A. 117:1245–1254; 1340–1345, 1941.Google Scholar
  257. Stempel, L.E., and Nelson, D.M.: Retained chorionic membrane following repeated amniocenteses. Am. J. Obstet. Gynecol. 142:242–243, 1982.PubMedGoogle Scholar
  258. Street, D. M., and Cunningham, F.: Congenital anomalies caused by intra-uterine bands. Clin. Orthop. 37: 82–97, 1964.PubMedGoogle Scholar
  259. Streeter, G.L.: Focal deficiencies in fetal tissues and their relation to intrauterine amputations. Contrib. Embryol. Carnegie Inst. 22:1–15, 1930.Google Scholar
  260. Sutcliffe, R. G.: The nature and origin of the soluble protein in human amniotic fluid. Biol. Rev. 50:1–33, 1975.PubMedGoogle Scholar
  261. Symchych, P.S., and Winchester, P.: Animal model: Amniotic fluid deficiency and fetal lung growth in the rat. Am. J. Pathol. 90:779–782, 1978.Google Scholar
  262. Symonds, E.M., Skinner, S.L., Stanley, M.A., Kirkland, J. A., and Ellis, R.C.: An investigation of the cellular source of renin in human chorion. J. Obstet. Gynaecol. Br. Commomw. 77:885–890, 1970.Google Scholar
  263. Szendi, B.: Experimentelle Untersuchungen beim Menschen über den Austausch und die intrauterine Rolle des Fruchtwassers. Arch. Gynäkol. 170:205–227, 1940.Google Scholar
  264. Tarantal, A.F., and Hendrickx, A.G.: Amniotic band syndrome in a rhesus monkey: A case report. J. Med. Primatol. 16:291–299, 1987.PubMedGoogle Scholar
  265. Thiede, H.A., and Choate, J.W.: Chorionic localization in the human placenta by immunofluorescent staining. II. Demonstration of hCG in the trophoblast and amnion epithelium of immature and mature placentas. Obstet. Gynecol. 22:433–443, 1963.PubMedGoogle Scholar
  266. Thomas, C.E.: The ultrastructure of human amnion epithelium. J. Ultrastruct. Res. 13:65–84, 1965.PubMedGoogle Scholar
  267. Thompson, V. M.: Amnion nodosum. J. Obstet. Gynaecol. Br. Emp. 67:611–614, 1960.PubMedGoogle Scholar
  268. Thorburn, M.J.: Sex-chromatin in a 13-day embryo. Lancet 1:277–278, 1964.Google Scholar
  269. Tibboel, D., Vermey-Keers, C., Klück, P., Gaillard, J.L.J., Kloppenberg, J., and Molenaar, J.C.: The natural history of gastroschisis during fetal life: development of the fibrous coating on the bowel loops. Teratology 33:267–272, 1986.PubMedGoogle Scholar
  270. Torpin, R.: Fetal Malformations Caused by Amnion Rupture during Gestation. Charles C Thomas, Springfield, II., 1968.Google Scholar
  271. Torpin, R.: The Human Placenta. Its Shape, Form, Origin and Development. Charles C Thomas, Springfield, II., 1969.Google Scholar
  272. Torpin, R., and Faulkner, A.: Intrauterine amputation with the missing member found in the fetal membranes. J. A.M. A. 198:185–187,1966.PubMedGoogle Scholar
  273. Torpin, R., Goodman, L., and Gramling, Z.W.: Amnion string swallowed by fetus. Am. J. Obstet. Gynecol. 90:829–830, 1964.PubMedGoogle Scholar
  274. Trasler, D. G., Walker, B.E., and Fraser, F.C.: Congenital malformations produced by amniotic-sac puncture. Science 124:439, 1956.PubMedGoogle Scholar
  275. Tuller, M.A.: Amniotic fluid embolism, afibrinogenemia, and disseminated fibrin thrombosis. Case report and review of the literature. Am. J. Obstet. Gynecol. 73:273–287, 1957.PubMedGoogle Scholar
  276. Unger, J.: Placental teratoma. Am. J. Clin. Pathol. 92: 371–373, 1989.PubMedGoogle Scholar
  277. Usher, R.H., Boyd, M.E., McLean, F.H., and Kramer, M.S.: Assessment of fetal risk in postdate pregnancies. Am. J. Obstet. Gynecol. 158:259–264, 1988.PubMedGoogle Scholar
  278. Van Bogaert, L.-J., Maldague, P., and Staquet, J.-P.: Morphologic changes in the amniotic epithelium in relation to placental weight and fetal maturity. Arch. Gynecol. 226:241–245, 1978.PubMedGoogle Scholar
  279. Vantrappen, G., Janssens, J., Peeters, T.L., Bloom, S.R., Christofides, N.D., and Hellemans, J.: Motilin and the interdigestive migrating motor complex in man. Am. J. Digest. Dis. 24:497–500, 1979.Google Scholar
  280. Verbeek, J.H., Robertson, E.M., and Haust, M.D.: Basement membranes (amniotic, trophoblastic, capillary) and adjacent tissue in term placenta. Am. J. Obstet. Gynecol. 99:1136–1146, 1967.PubMedGoogle Scholar
  281. Verjaal, M., Leschot, N.J., Wolf, N.J., and Treffers, RE.: Karyotypic differences between cells from placenta and other fetal tissues. Prenat. Diagn. 7:343–348, 1987.PubMedGoogle Scholar
  282. Verma, I.C., and Ghai, O.P.: Study of sex chromatin in amniotic membranes of newborns. Indian J. Med. Res. 59:1660–1665, 1971.Google Scholar
  283. Wagner, G., and Tygstrup, I.: Oligohydramnios and urinary malformations in early human pregnancy. Acta Pathol. Microbiol. Scand. 59:273–278, 1963.Google Scholar
  284. Wang, T.: Fetalmembranen des Menschen. Fortschr. Med. 46:1185–1188, 1984.Google Scholar
  285. Wang, T. und Schneider, J.: Myofibroblasten im Bindegewebe des menschlichen Amnions. Z. Geburtshilfe Perinatol. 186:164–168, 1982.PubMedGoogle Scholar
  286. Wang, T. and Schneider, J.: Cellular junctions on the free surface of human placental syncytium. Arch. Gynecol. 240:211–216, 1987.PubMedGoogle Scholar
  287. Wentworth, P., and Turnbull, I.: Bilateral renal agenesis (Potter’s syndrome) J. Reprod. Med. 3:87–91, 1969.Google Scholar
  288. Weser, H., and Kaufmann, P.: Lichtmikroskopische und histochemische Untersuchungen an der Chorionplatte der reifen menschlichen Placenta. Arch. Gynaekol. 225:15–30, 1978.Google Scholar
  289. Wigglesworth, I.S., and Desai, R.: Is fetal respiratory function a major determinant of perinatal survival? Lancet 1:264–267, 1982.PubMedGoogle Scholar
  290. Wong, EWS., Loong, E.P.L., and Chang, A.M.Z.: Ultrasound diagnosis of meconium-stained amniotic fluid. Am. J. Obstet. Gynecol. 150:359, 1985.Google Scholar
  291. Woolnough, H.C.: Amniotic band syndrome. Teratology 36:150, 1987 (abstract).Google Scholar
  292. Woyton, J.: Encephalocele attached to the placenta. Am. J. Obstet. Gynecol. 81:1028–1032, 1961.PubMedGoogle Scholar
  293. Wynn, R.M.: Morphology of the placenta. In Biology of Gestation. N.S. Assali, ed. Academic Press New York, 1968.Google Scholar
  294. Wynn, R.: Ultrastructural development of the human decidua. Am. J. Obstet. Gynecol. 118:652–670, 1974.PubMedGoogle Scholar
  295. Wynn, R.M., and French, G.L.: Comparative ultra-structure of the mammalian amnion. Obstet. Gynecol. 31:759–774, 1968.PubMedGoogle Scholar
  296. Wynn, R.M., Sever, P.S., and Hellman, L.M.: Morphologic studies of the ruptured amnion. Am. J. Obstet. Gynecol. 99:359–367, 1967.PubMedGoogle Scholar
  297. Yamaguchi, Y., Isemura, M., Yosizawa, Z, Kurosawa, K., Yoshinaga, K., Sato, A., and Suzuki, M.: Changes in the distribution of fibronectin in the placenta during normal human pregnancy. Am. J. Obstet. Gynecol. 152:715–718, 1985.PubMedGoogle Scholar
  298. Yeomans, E.R., Gilstrap, L.C., Leveno, K.J., and Burris, J.S.: Meconium in the amniotic fluid and fetal acid-base status. Obstet. Gynecol. 73:175–178, 1989.PubMedGoogle Scholar
  299. Yoshimura, S., Nishimura, T., and Yoshida, Y.: The morphometry of the sudan-III-positive granules in the cytoplasm of the human amniotic epithelium. Acta Cytol. (Baltimore) 224:44–48, 1980.Google Scholar
  300. Young, I.D., Lindenbaum, R.H., Thompson, E.M., and Pembrey, M.E.: Amniotic bands in connective tissue disorders. Arch. Dis. Child. 60:1061–1063, 1985.PubMedGoogle Scholar
  301. Zorn, E.M., Hanson, F.W., Grève, L.C., Phelps-Sandall, B., and Tennant, E.R.: Analysis of the significance and origin of the discolored amniotic fluid detected at midtrimester amniocentesis. Am. J. Obstet. Gynecol. 154:1234–1240, 1986.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kurt Benirschke
    • 1
    • 2
  • Peter Kaufmann
    • 3
  1. 1.Pathology and Reproductive MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.University Medical CenterSan DiegoUSA
  3. 3.Institut für Anatomie der Medizinischen Fakultät, Rheinisch-Westfälische TechnischeHochschule AachenAachenGermany

Personalised recommendations