Advertisement

Euler and Navier-Stokes Equations for Incompressible Fluids

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 117)

Abstract

This chapter deals with equations describing motion of an incompressible fluid moving in a fixed compact space M, which it fills completely. We consider two types of fluid motion, with or without viscosity, and two types of compact space, a compact smooth Riemannian manifold with or without boundary.

Keywords

Vector Field Weak Solution Euler Equation Incompressible Fluid Vortex Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BaC]
    H. Bahouri and J. Chemin, Equations de transport relatives a des champs de vecteurs non-lipsehitziens et mécanique des fluides, Arch. Rat. Mech. Anal. 127(1994), 159–181.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [BM]
    J. Ball and D. Marcus, Vorticity intensification and transition to turbulence in the three-dimensional Euler equations, Comm. Math. Phys. 147(1992), 371–394.MathSciNetCrossRefGoogle Scholar
  3. [Bar]
    C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40(1972), 769–790.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [Bat]
    G. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967.zbMATHGoogle Scholar
  5. [BG]
    J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations, Preprint, 1992.Google Scholar
  6. [BKM]
    J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys. 94(1984), 61–66.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [BeC]
    A. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math.Phys. 152(1993), 19–28.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Bon]
    V. Bondarevsky, On the global regularity problem for 3-dimensional Navier-Stokes equations, Preprint, 1995.Google Scholar
  9. [BBr]
    J. Bourguignon and H. Brezis, Remarks on the Euler equations, J. Func. Anal. 15(1974), 341–363.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [CKN]
    L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35(1982), 771–831.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [Cha]
    D. Chae, Weak solutions of the 2-D Euler equations with initial vorticity in L(log L), J. Diff. Eqs. 103(1993), 323–337.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Chel]
    J. Chemin, Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, Preprint, 1990.Google Scholar
  13. [Che2]
    J. Chemin, Persistence des structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Ecole Norm Sup. Paris 26(1993), 517–542.MathSciNetzbMATHGoogle Scholar
  14. [Che3]
    J. Chemin, Une facette mathématique de la mécanique des fluides, I, Publ. CNRS #1055, Paris, 1993.Google Scholar
  15. [ChL]
    J. Chemin and N. Lerner, Flot de champs de vecteurs non-lipschitziens et équations de Navier-Stokes, Publ. CNRS #1062, 1993.Google Scholar
  16. [Cho]
    A. Chorin, Voracity and Turbulence, Springer-Verlag, New York, 1994.Google Scholar
  17. [ChM]
    A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979.zbMATHCrossRefGoogle Scholar
  18. [CFe]
    P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Math. J. 42(1993), 775–790.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [CFo]
    P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Math., Univ. of Chicago Press, 1988.zbMATHGoogle Scholar
  20. [CLM]
    P. Constantin, P. Lax, and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, CPAM 38(1985), 715–724.MathSciNetzbMATHGoogle Scholar
  21. [Del]
    J. Delort, Existence de nappes de tourbillon en dimension deux, J. AMS 4(1991), 553–586.MathSciNetzbMATHGoogle Scholar
  22. [DW]
    P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains, Math. Nachr. 171(1995), 111–198.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [DM]
    R. DiPerna and A. Majda, Concentration in regularisations for 2-D incompressible flow, CPAM 40(1987), 301–345.MathSciNetzbMATHGoogle Scholar
  24. [Eb]
    D. Ebin, A concise presentation of the Euler equations of hydrodynamics, Comm. PDE 9(1984), 539–559.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [EbM]
    D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Annals of Math. 92(1970), 102–163.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [EM]
    L. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. AMS 7(1994), 199–219.zbMATHGoogle Scholar
  27. [FJR]
    E. Fabes, B. F. Jones, and N. Riviere, The initial boundary value problem for the Navier-Stokes equation with data in L p, Arch. Rat. Mech. Anal. 45(1972), 222–240.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [FKV]
    E. Fabes, C. Kenig, and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57(1988), 769–793.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [Fed]
    P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155(1993), 219–248.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [Fer]
    A. Ferrari, On the blow-up of the 3-D Euler equation in a bounded domain, Comm. Math. Phys. 155(1993), 277–294.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [FGT]
    C. Foias, C. Guillope, and R. Temam, Lagrangian representation of a flow, J. Diff. Eqs. 57(1985), 440–449.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [FT]
    C. Foias and R. Temam, Some analytical and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures etAppl. 58(1979), 339–368.MathSciNetzbMATHGoogle Scholar
  33. [FK]
    H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rat. Mech.Anal. 16(1964), 269–315.MathSciNetzbMATHGoogle Scholar
  34. [FM]
    H. Fujita and H. Morimoto, On fractional powers of the Stokes operator, Proc. Japan Acad. 16(1970), 1141–1143.MathSciNetCrossRefGoogle Scholar
  35. [GM1]
    Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal. 89(1985), 267–281.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [GS]
    G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Math. Scand. 69(1991), 217–290.MathSciNetzbMATHGoogle Scholar
  37. [Hei]
    H. Heimholte, On the integrals of the hydrodynamical equations that express vortex motion, Phil. Mag. 33(1887), 485–512.Google Scholar
  38. [Hop]
    E. Hopf, Über die Anfangwertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4(1951), 213–231.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [HM]
    T. Hughes and J. Marsden, A Short Course in Fluid Mechanics, Publish or Perish Press, Boston, 1976.zbMATHGoogle Scholar
  40. [Ktl]
    T. Kato, On classical solutions of two dimensional nonstationary Euler equations, Arch. Rat. Mech. Anal. 25(1967), 188–200.zbMATHCrossRefGoogle Scholar
  41. [Kt2]
    T. Kato, Nonstationary flows of viscous and ideal fluids in ℝ3, J. Func. Anal. 9(1972), 296–305.zbMATHCrossRefGoogle Scholar
  42. [Kt3]
    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Springer LNM 448(1974), 25–70.Google Scholar
  43. [Kt4]
    T. Kato, Strong L p-solutions to the Navier-Stokes equations in R m, with applications to weak solutions, Math. Zeit. 187(1984), 471–480.zbMATHCrossRefGoogle Scholar
  44. [Kt5]
    T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. 22(1992), 127–155.zbMATHCrossRefGoogle Scholar
  45. [Kt6]
    T. Kato, The Navier-Stokes equation for an incompressible fluid in R 2 with a measure as the initial vorticity, Preprint, 1993.Google Scholar
  46. [KL]
    T. Kato and C. Lai, Nonlinear evolution equations and the Euler flow, J. Func.Anal. 56(1984), 15–28.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [KP]
    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, CPAM 41(1988), 891–907.MathSciNetzbMATHGoogle Scholar
  48. [Lad]
    O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.zbMATHGoogle Scholar
  49. [Lam]
    H. Lamb, Hydrodynamics, Dover, New York, 1932.zbMATHGoogle Scholar
  50. [Ler]
    J. Leray, Etude de diverses équations integrales non linéaires et de quelques problèmes que pose d’hydrodynamique, J. Math. Pures etAppl. 12(1933), 1–82.zbMATHGoogle Scholar
  51. [Li]
    J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites NonLinéaires, Dunod, Paris, 1969.zbMATHGoogle Scholar
  52. [Mj]
    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci. #53, Springer-Verlag, 1984.zbMATHCrossRefGoogle Scholar
  53. [Mj2]
    A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, CPAM 38(1986), 187–220.Google Scholar
  54. [Mj3]
    A. Majda, Mathematical fluid dynamics: The interaction of nonlinear analysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988), 351–394.Google Scholar
  55. [Mj4]
    A. Majda, Vorticity, turbulence, and acoustics in fluid flow, SIAMReview 33(1991), 349–388.MathSciNetzbMATHGoogle Scholar
  56. [Mj5]
    A. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Math. J. 42(1993), 921–939.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [MP]
    C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonvis-cous Fluids, Springer-Verlag, New York, 1994.CrossRefGoogle Scholar
  58. [MF]
    R. von Mises and K. O. Friedrichs, Fluid Dynamics, Appl. Math. Sci. 5, Springer-Verlag, New York, 1971.zbMATHCrossRefGoogle Scholar
  59. [OO]
    H. Ockendon and J. Ockendon, Viscous Flow, Cambridge Univ. Press, Cambridge, 1995.zbMATHCrossRefGoogle Scholar
  60. [OT]
    H. Ockendon and A. Tayler, Inviscid Fluid Flow, Appl. Math. Sci. #43, Springer-Verlag, New York, 1983.Google Scholar
  61. [Safl]
    P. Saffman, Vortex Dynamics, Cambridge Univ. Press, Cambridge, 1992.zbMATHGoogle Scholar
  62. [Se1]
    J. Serrin, Mathematical principles of classical fluid dynamics, Encycl. of Physics, Vol. 8, pt. 1, pp. 125–263, Springer-Verlag, New York, 1959.Google Scholar
  63. [Se2]
    J. Serrin, The initial value problem for the Navier-Stokes equations, in Non-linear Problems, R.E. Langer, ed., Univ. of Wise. Press, Madison, Wise, 1963, pp. 69–98.Google Scholar
  64. [So11]
    V. Solonnikov, On estimates of the tensor Green’s function for some boundary-value problems, Dokl. Akad. Nauk SSSR 130(1960), 988–991.MathSciNetGoogle Scholar
  65. [Sol2]
    V. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, 7. Soviet Math. 8(1977), 467–529.zbMATHCrossRefGoogle Scholar
  66. [T1]
    M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.zbMATHCrossRefGoogle Scholar
  67. [T2]
    M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. PDE 17(1992), 1407–1456.zbMATHCrossRefGoogle Scholar
  68. [Tern]
    R. Temam, Navier-Stokes Equations, North-Holland, New York, 1977.zbMATHGoogle Scholar
  69. [Tem2]
    R. Temam, On the Euler equations of incompressible perfect fluids, J. Func. Anal. 20(1975), 32–43.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [VD]
    M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford, Calif., 1982.Google Scholar
  71. [vWa]
    W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg & Sohn, Braunschweig, 1985.Google Scholar
  72. [Wol]
    W. Wolibner, Un théorème d’existence du mouvement plan d’un fluide parfait, homogene, incompressible, pendant un temps infiniment long, Math. Zeit. 37(1933), 698–726.MathSciNetCrossRefGoogle Scholar
  73. [Yud]
    V. Yudovich, Non-stationary flow of an ideal incompressible fluid, J. Math, and Math. Phys. 3(1963), 1032–1066.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations