Advertisement

Dirac Operators and Index Theory

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 116)

Abstract

The physicist P. A. M. Dirac constructed first-order differential operators whose squares were Laplace operators, or more generally wave operators, for the purpose of extending the Schrodinger-Heisenberg quantum mechanics to the relativistic setting. Related operators have been perceived to have central importance in the interface between PDE and differential geometry, and we discuss some of this here.

Keywords

Riemannian Manifold Vector Bundle Line Bundle Dirac Operator Clifford Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [An]
    M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. AMS 2(1989), 455–490.zbMATHGoogle Scholar
  2. [ABP]
    M. Atiyah, R. Bott, and V. Patodi, On the heat equation and the index theorem, Inventiones Math. 19(1973), 279–330.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [ABS]
    M. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3(1964), 3–38.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [AHS]
    M. Atiyah, N. Hitchen, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Royal Soc. London A 362(1978), 425–461.zbMATHCrossRefGoogle Scholar
  5. [AS]
    M. Atiyah and I. Singer, The index of elliptic operators I, Ann. of Math. 87(1968), 484–530; III, Ann. of Math. 87(1968), 546–664; IV, Ann. of Math. 93(1971), 119 – 138; V, Ann. of Math. 93(1971), 139–149.MathSciNetCrossRefGoogle Scholar
  6. [BDT]
    P. Baum, R. Douglas, and M. Taylor, Cycles and relative cycles in analytic K- homology, J. Diff. Geom. 30(1989), 761–804.MathSciNetzbMATHGoogle Scholar
  7. [Ber]
    F. Berezin, The Method of Second Quantization, Academic Press, New York, 1966.zbMATHGoogle Scholar
  8. [BGM]
    M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une Variété Riemannienne, LNM #194, Springer-Verlag, New York, 1971.zbMATHGoogle Scholar
  9. [BGV]
    N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, New York, 1992.zbMATHCrossRefGoogle Scholar
  10. [BV]
    N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113(1985), 305–345.MathSciNetzbMATHGoogle Scholar
  11. [BV2]
    N. Berline and M. Vergne, A proof of Bismut local index theorem for a family of Dirac operators, Topology 26(1987), 438–464.MathSciNetCrossRefGoogle Scholar
  12. [Bes]
    A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.zbMATHGoogle Scholar
  13. [B1]
    J. Bismut, The Atiyah-Singer theorems for classical elliptic operators, a probabilistic approach, J. Func. Anal. 57(1984), 56–99.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [Bi2]
    J. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83(1986), 91–151.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [BiC]
    J. Bismut and J. Cheeger, Families index for manifolds with boundary, super- connections, and cones, I, J. Func. Anal. 89(1990), 313–363; II, J. Func. Anal. 90(1990), 306–354.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [B1]
    B. Blackadar, K-theory for Operator Algebras, Springer-Verlag, New York, 1986.zbMATHCrossRefGoogle Scholar
  17. [BTu]
    R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, 1982.zbMATHCrossRefGoogle Scholar
  18. [Ch]
    J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109(1979), 259–322.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [Cher]
    S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds., Ann. Math. 45(1944), 747–752.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [Chv]
    C. Chevalley, Theory of Lie Groups, Princeton Univ. Press, Princeton, N. J., 1946.zbMATHGoogle Scholar
  21. [Con]
    A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.zbMATHGoogle Scholar
  22. [CS]
    H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrodinger Operators, Springer-Verlag, New York, 1987.Google Scholar
  23. [D]
    S. Donaldson, The Seiberg- Witten equations and 4-manifold topology, Bull. AMS 33(1996), 45–70.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [Don]
    H. Donnelly, Local index theorems for families, Mich. Math. J. 35(1988), 11–20.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [EGH]
    T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, Gauge Theories, and Differential Geometry, Physics Reports, Vol. 66, no. 6(1980).MathSciNetCrossRefGoogle Scholar
  26. [FU]
    D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer-Verlag, New York, 1984.zbMATHCrossRefGoogle Scholar
  27. [Gt1]
    E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys. 92(1983), 163–178.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [Gt2]
    E. Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25(1986), 111–117.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [Gil]
    P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, Boca Raton, FL, 1995.zbMATHGoogle Scholar
  30. [Gu]
    R. Gunning, Lectures on Riemann Surfaces, Princeton Univ. Press, Princeton, N. J., 1967.zbMATHGoogle Scholar
  31. [Har]
    R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.zbMATHCrossRefGoogle Scholar
  32. [Hi]
    N. Hicks, Notes on Differential Geometry, Van Nostrand, New York, 1965.zbMATHGoogle Scholar
  33. [Hir]
    F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966.zbMATHCrossRefGoogle Scholar
  34. [KN]
    S. Kobayashi and N. Nomizu, Foundations of Differential Geometry, Interscience, New York, Vol.1, 1963; Vol. 2, 1969.zbMATHGoogle Scholar
  35. [Ko1]
    K. Kodaira, The theorem of Riemann-Roch on compact analytic surfaces, Amer. J. Math. 73(1951), 813–875.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [Ko2]
    K. Kodaira, The theorem of Riemann-Roch for adjoint systems on 3-dimensional algebraic varieties, Ann. of Math. 56(1952), 298–342.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [Kot]
    T. Kotake, An analytical proof of the classical Riemann-Roch theorem, Proc. Symp. Pure Math. 16(1970), 137–146.MathSciNetCrossRefGoogle Scholar
  38. [LM]
    H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, N. J., 1989.zbMATHGoogle Scholar
  39. [Lic]
    A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A 257(1963), 7–9.MathSciNetzbMATHGoogle Scholar
  40. [MS]
    H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43–69.MathSciNetzbMATHGoogle Scholar
  41. [Mel]
    R. Melrose, Index Theory on Manifolds with Corners, A. K. Peters, Boston, 1994.Google Scholar
  42. [MiS]
    J. Milnor and J. Stasheff, Characteristic Classes, Princeton Univ. Press, Princeton, N. J., 1974.zbMATHGoogle Scholar
  43. [Mor]
    J. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Univ. Press, Princeton, N. J., 1996.zbMATHGoogle Scholar
  44. [Pal]
    R. Palais, ed., Seminar on the Atiyah-Singer Index Theorem, Princeton Univ. Press, Princeton, N. J., 1963.Google Scholar
  45. [Pt1]
    V. Patodi, Curvature and the eigenforms of the Laplace operator, J. Diff. Geom. 5(1971), 233–249.MathSciNetzbMATHGoogle Scholar
  46. [Pt2]
    V. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kahler manifolds, J. Diff. Geom. 5(1971), 251–283.MathSciNetzbMATHGoogle Scholar
  47. [Poo]
    W. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.zbMATHGoogle Scholar
  48. [Roe]
    J. Roe, Elliptic Operators, Topology, and Asymptotic Methods, Longman, New York, 1988.zbMATHGoogle Scholar
  49. [Rog]
    A. Rogers, A superspace path integral proof of the Gauss-Bonnet-Chern theorem, J. of Geom. and Phys. 4(1987), 417–437.zbMATHCrossRefGoogle Scholar
  50. [Spi]
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1–5, Publish or Perish Press, Berkeley, 1979.Google Scholar
  51. [Stb]
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.zbMATHGoogle Scholar
  52. [Tro]
    A. Tromba, A classical variational approach to Teichmuller theory, pp. 155–185 in LNM #1365, Springer-Verlag, New York, 1989.Google Scholar
  53. [Wit]
    E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B202(1982), 253.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations