Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 116))

  • 941 Accesses

Abstract

In this chapter we study the phenomenon of scattering by a compact obstacle in Euclidean space ℝ3. We restrict attention to the three-dimensional case, though a similar analysis can be given for obstacles in n whenever n is odd. The Huygens principle plays an important role in part of the analysis, and for that part the situation for n even is a little more complicated, though a theory exists there also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Lectures on Elliptic Boundary Problems, Van Nostrand, New York, 1964.

    Google Scholar 

  2. T. Angell, D. Colton, and A. Kirsch, The three dimensional inverse scattering problem for acoustic waves, J. Diff. Eq. 46(1982), 46–58.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Angell, R. Kleinman, and G. Roach, An inverse transmission problem for the Heimholte equation, Inverse Problems 3(1987), 149–180.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.M. Berthier, Spectral Theory and Wave Operators for the Schrodinger Equation, Pitman, Boston, 1982.

    Google Scholar 

  5. V. Buslaev, Scattered plane waves, spectral asymptotics, and trace formulas in exterior problems, Dokl Akad. Nauk. SSSR 197(1971), 1067–1070.

    MathSciNet  Google Scholar 

  6. D. Colton, The inverse scattering problem for time-harmonic accoustic waves, SIAM Review 26(1984), 323–350.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Colton, Partial Differential Equations, an Introduction, Random House, New York, 1988.

    MATH  Google Scholar 

  8. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

    MATH  Google Scholar 

  9. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  10. R. Courant and D. Hilbert, Methods of Mathematical Physics II, J. Wiley, New York, 1966.

    Google Scholar 

  11. D. Eidus, On the principle of limiting absorption, Mat. Sb. 57(1962), 13–44.

    MathSciNet  Google Scholar 

  12. A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956.

    MATH  Google Scholar 

  13. J. Helton and J. Ralston, The first variation of the scattering matrix, J. Diff. Equations 21(1976), 378–394.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Hille and R. Phillips, Functional Analysis and Semigroups, Colloq. Publ. Vol. 31, AMS, Providence, R.I., 1957.

    MATH  Google Scholar 

  15. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. 3 and 4, Springer-Verlag, New York, 1985.

    Google Scholar 

  16. V. Isakov, Uniqueness ans stability in multi-dimensional inverse problems, Inverse Problems 9(1993), 579–621.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Jensen and T. Kato, Asymptotic behavior of the scattering phase for exterior domains, Comm. in PDE 3(1978), 1165–1195.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Jones and X. Mao, The inverse problem in hard acoustic scattering, Inverse Problems 5(1989), 731–748.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  20. A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems 9(1993), 81–96.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kirsch, R. Kress, P. Monk, and A. Zinn, Two methods for solving the inverse scattering problem, Inverse Problems 4(1988), 749–770.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Kristensson and C. Vogel, Inverse problems for acoustic waves using the penalised liklihood method, Inverse Problems 2(1984), 461–479.

    Article  MathSciNet  Google Scholar 

  23. P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967.

    MATH  Google Scholar 

  24. P. Lax and R. Philips, Scattering theory, Rocky Mountain J. Math. 1(1971), 173–223.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Lax and R. Phillips, Scattering theory for the acoustic equation in an even number of space dimensions, Indiana Univ. Math. J. 22(1972), 101–134.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Lax and R. Phillips, The time delay operator and a related trace formula, in Topics in Func. Anal., I. Gohberg and M. Kac, eds., Academic Press, New York, 1978, pp. 197–215.

    Google Scholar 

  27. P. Lax and R. Phillips, Scattering Theory for Automorphic Functions, Princeton Univ. Press, Princeton, N. J., 1976.

    MATH  Google Scholar 

  28. A. Majda and J. Ralston, An analogue of Weyl’s theorem for unbounded domains, Duke Math. J. 45(1978), 513–536.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Majda and M. Taylor, Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems, Comm. PDE 2(1977), 395–438.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Melrose, Scattering theory and the trace of the wave group, J. Func. Anal. 45(1982), 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Melrose, Polynomial bound on the number of scattering poles, J. Func. Anal. 53(1983), 287–303.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Comm. in PDE 11(1988), 1431–1439.

    Article  MathSciNet  Google Scholar 

  33. R. Melrose, Geometric Scattering Theory, Cambridge Univ. Press, Cambridge, 1995.

    MATH  Google Scholar 

  34. R. Melrose and M. Taylor, Near peak scattering and the corrected Kirchhoff approximation for convex bodies, Adv. in Math. 55(1985), 242–315.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Melrose and M. Taylor, Boundary Problems for Wave Equations with Grazing and Gliding Rays. Monograph, in preparation.

    Google Scholar 

  36. K. Miller, Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal. 1(1970), 52–74.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Miller, Efficient numerical methods for backward solutions of parabolic problems with variable coefficients, in Improperly Posed Boundary Value Problems, A. Carasso and A. Stone, eds., Pitman Press, London, 1975.

    Google Scholar 

  38. K. Miller and G. Viano, On the necessity of nearly-best possible methods for analytic continuation of scattering data, J.Math Phys. 14(1973), 1037–1048.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math. 15 (1962), 349–361.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Morawetz, Exponential decay of solutions to the wave equation, Comm. Pure Appl. Math. 19(1966), 439–444.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Morawetz, J. Ralston, and W. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30(1977), 447–508.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Murch, D. Tan, and D. Wall, Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Helmholtz problem, Inverse Problems 4(1988), 1117–1128.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, New York, 1966.

    Google Scholar 

  44. H. Nussensweig, High frequency scattering by an impenetrable sphere, Ann. Phys. 34(1965), 23–95.

    Article  Google Scholar 

  45. F. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.

    Google Scholar 

  46. V. Petkov and G. Popov, Asymptotic behavior of the scattering phase for nontrapping obstacles, Ann. Inst. Fourier (Grenoble) 32(1982), 111–149.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Ralston, Propagation of singularities and the scattering matrix, in Singularities in Boundary Value Problems, H. Garnir, ed., D. Reidel, Dordrecht, 1981, pp. 169–184.

    Chapter  Google Scholar 

  48. A. Ramm, Scattering by Obstacles, D. Reidel, Dordrecht, 1986.

    Book  MATH  Google Scholar 

  49. J. Rauch, Partial Differential Equations, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  50. J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Func. Anal. 18(1975), 27–59.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Reed and B. Simon, Methods of Mathematical Physics, Academic Press, New York, Vols. 1,2, 1975; Vols. 3,4,1978.

    Google Scholar 

  52. A. Roger, Newton-Kantorovich algorithm applied to an electromagnetic inverse problem, IEEE Trans. Antennas Propagat 29(1981), 232–238.

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton Univ. Press, Princeton, N. J., 1971.

    MATH  Google Scholar 

  54. B. Simon, Trace Ideals and Their Applications, London Math. Soc. Lecture Notes no. 35, Cambridge Univ. Press, Cambridge, 1979.

    MATH  Google Scholar 

  55. I. Stakgold, Boundary Value Problems of Mathematical Physics, Macmillan, New York, 1968.

    MATH  Google Scholar 

  56. M. Taylor, Propagation, reflection, and diffraction of singularities of solutions to wave equations, Bull. AMS 84(1978), 589–611.

    Article  MATH  Google Scholar 

  57. M. Taylor, Fourier integral operators and harmonic analysis on compact manifolds, Proc. Symp. Pure Math. 35(pt. 2)(1979), 113–136.

    Google Scholar 

  58. M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, N. J., 1981.

    MATH  Google Scholar 

  59. M. Taylor, Estimates for approximate solutions to acoustic inverse scattering problems, IMA Preprint #1303, 1995.

    Google Scholar 

  60. V. K. Varadan and V. V. Varadan (eds.), Acoustic, Electromagnetic, and Elastic Wave ScatteringFocus on the T matrix Approach, Pergammon, New York, 1980.

    Google Scholar 

  61. G. Watson, Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1945.

    Google Scholar 

  62. C. Wilcox, Scattering Theory for the d’Alembert Equation in Exterior Domains, LNM no. 442, Springer-Verlag, New York, 1975.

    MATH  Google Scholar 

  63. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, M.E. (1996). Scattering by Obstacles. In: Partial Differential Equations II. Applied Mathematical Sciences, vol 116. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4187-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4187-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4189-6

  • Online ISBN: 978-1-4757-4187-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics