Spectral Theory

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 116)

Abstract

This chapter is devoted to the spectral theory of self-adjoint, differential operators. We cover a number of different topics, beginning in §1 with a proof of the spectral theorem. It was an arbitrary choice to put that material here, rather than in Appendix A, on functional analysis. The main motivation for putting it here is to begin a line of reasoning that will be continued in subsequent sections, using the great power of studying unitary groups as a tool in spectral theory. After we show how easily this study leads to a proof of the spectral theorem in §1, in later sections we use it in various ways: as a tool to establish self-adjointness, as a tool for obtaining specific formulas, including basic identities among special functions, and in other capacities.

Keywords

Riemannian Manifold Laplace Operator Dirichlet Boundary Condition Spectral Theory Neumann Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ad]
    B. Adams, Algebraic Approach to Simple Quantum Systems, Springer-Verlag, New York, 1994.CrossRefGoogle Scholar
  2. [Ag]
    S. Agmon, Lectures on Elliptic Boundary Problems, Van Nostrand, New York, 1964.Google Scholar
  3. [Bai]
    W. Bailey, Generalized Hypergeometric Series, Hafner, New York, 1972.Google Scholar
  4. [Ber]
    P. Berard, Variétés Riemanniennes isospectrales non isométriques, Sem. Bourbaki, #705, 1988–89.Google Scholar
  5. [BLP]
    V. Berestetskii, E. Lifsitz, and L. Pitaevskii, Relativistic Quantum Theory, Pergammon Press, Oxford, 1971.Google Scholar
  6. [BGM]
    M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une Variété Riemannienne, LNM #194, Springer-Verlag, New York, 1971.MATHGoogle Scholar
  7. [BSU]
    J. Bowman, T. Senior, and P. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland, Amsterdam, 1969.Google Scholar
  8. [Br]
    R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly 95(1988), 823–839.MathSciNetMATHCrossRefGoogle Scholar
  9. [BrC]
    J. Brossard and R. Carmona, Can one hear the dimension of a fractal? Commun. Math. Phys. 104(1986), 103–122.MathSciNetMATHCrossRefGoogle Scholar
  10. [Cha]
    I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.MATHGoogle Scholar
  11. [Che]
    J. Cheeger, Spectral geometry of spaces with cone-like singularities, Proc. NAS, USA 76(1979), 2103–2106.MathSciNetMATHCrossRefGoogle Scholar
  12. [CT]
    J. Cheeger and M. Taylor, Diffraction of waves by conical singularities, Comm. Pure Appl. Math. 35(1982), 275–331, 487–529.MathSciNetMATHCrossRefGoogle Scholar
  13. [Chn]
    P. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, Jour. Funct. Anal. 12(1973), 401–414.MathSciNetMATHCrossRefGoogle Scholar
  14. [CCTV]
    L. Colzani, A. Crespi, G. Travaglini, and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in Euclidean and non-Euclidean spaces, Trans. AMS 338(1993), 43–55.MathSciNetMATHGoogle Scholar
  15. [Cor]
    J. Cornwell, Group Theory in Physics, Academic Press, London, Vols. 1,2,1984; Vol. 3, 1989.MATHGoogle Scholar
  16. [CyS]
    H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, Springer- Verlag, New York, 1987.MATHGoogle Scholar
  17. [DST]
    E. B. Davies, B. Simon, and M. Taylor, L p spectral theory of Kleinian groups, Jour. Funct. Anal. 78(1988), 116–136.MathSciNetMATHCrossRefGoogle Scholar
  18. [DS]
    N. Dunford and J. Schwartz, Linear Operators, I, II, Interscience, New York, 1958,1963.Google Scholar
  19. [Eng]
    M. Englefield, Group Theory and the Coulomb Problem, Wiley-Interscience, New York, 1972.MATHGoogle Scholar
  20. [Fo]
    G. Folland, Harmonic Analysis on Phase Space, Princeton Univ. Press, Princeton, N. J., 1989.Google Scholar
  21. [GWW]
    C. Gordon, D. Webb, and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math. 110(1992), 1–22.MathSciNetMATHCrossRefGoogle Scholar
  22. [Gr]
    P. Greiner, An asymptotic expansion for the heat equation, Arch. Rat. Mech. Anal. 41(1971), 163–218.MathSciNetMATHCrossRefGoogle Scholar
  23. [GS1]
    V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984.MATHGoogle Scholar
  24. [GS2]
    V. Guillemin and S. Sternberg, Variations on a Theme by Kepler, AMS Colloq. Publ., Vol. 42, Providence, R. I., 1990.MATHGoogle Scholar
  25. [Hej]
    D. Hejhal, The Selberg trace formula for PSL(2, ℝ;), I, LNM #548, II, LNM #1001, Springer-Verlag, New York, 1976, 1983.Google Scholar
  26. [Helg]
    S. Helgason, Analysis on Lie Groups and Symmetric Spaces, CBMS Reg. Conf. Ser. in Math. #14, AMS, Providence, R. L, 1972.Google Scholar
  27. [Ho]
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. 3 and 4, Springer-Verlag, New York, 1985.Google Scholar
  28. [Ing]
    A. Ingham, The Distribution of Prime Numbers, Cambridge Univ. Press, Cambridge, 1932.Google Scholar
  29. [IZ]
    C. Itzykson and J. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980.Google Scholar
  30. [Kac]
    M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73(1966), 1–23.MATHCrossRefGoogle Scholar
  31. [Lap]
    M. Lapidus, Fractal drum, inverse spectral problems for elliptic operators, and a partial resolution of the Weyl-Berry conjecture, Trans. AMS 325(1991), 465–529.MathSciNetMATHCrossRefGoogle Scholar
  32. [LP]
    P. Lax and R. Phillips, Scattering Theory for Automorphic Functions, Princeton Univ. Press, Princeton, N. J., 1976.MATHGoogle Scholar
  33. [Leb]
    N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.MATHGoogle Scholar
  34. [MS]
    H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43–69.MathSciNetMATHGoogle Scholar
  35. [Mes]
    A. Messiah, Quantum Mechanics, North Holland, Amsterdam, 1961.Google Scholar
  36. [Mil]
    W. Miller, Symmetry and Separation of Variables, Addison-Wesley, Reading, Mass., 1977.MATHGoogle Scholar
  37. [Miz]
    S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1973.Google Scholar
  38. [Olv]
    F. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.Google Scholar
  39. [RS]
    M. Reed and B. Simon, Methods of Mathematical Physics, Academic Press, New York, Vols. 1, 2, 1975; Vols. 3, 4,1978.MATHGoogle Scholar
  40. [Ser]
    G. W. Series, Spectrum of Atomic Hydrogen, Oxford Univ. Press, Oxford, 1957.Google Scholar
  41. [Shu]
    M. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, New York, 1987.MATHCrossRefGoogle Scholar
  42. [Sil]
    B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton Univ. Press, Princeton, N. J., 1971.MATHGoogle Scholar
  43. [Si2]
    B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, Cambridge, 1979.MATHGoogle Scholar
  44. [Si3]
    B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979.MATHGoogle Scholar
  45. [Sob]
    S. Sobolev, Partial Differential Equations of Mathematical Physics, Dover, New York, 1964.MATHGoogle Scholar
  46. [Som]
    A. Sommerfeld, Mathematische theorie der diffraktion, Math. Ann. 47(1896), 317–374.MathSciNetMATHCrossRefGoogle Scholar
  47. [Stk]
    I. Stakgold, Boundary Value Problems of Mathematical Physics, Macmillàn, New York, 1968.MATHGoogle Scholar
  48. [Str]
    R. Strichartz, Analysis of the Laplacian on a complete Riemannian manifold, J. Func. Anal. 52(1983), 48–79.MathSciNetMATHCrossRefGoogle Scholar
  49. [Sun]
    T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121(1985), 169–186.MathSciNetMATHCrossRefGoogle Scholar
  50. [T1]
    M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, N. J., 1981.MATHGoogle Scholar
  51. [T2]
    M. Taylor, Noncommutative Harmonic Analysis, AMS, Providence, R. L, 1986.MATHGoogle Scholar
  52. [Ter]
    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Springer- Verlag, New York, 1985.MATHCrossRefGoogle Scholar
  53. [Wat]
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1945.Google Scholar
  54. [WW]
    E. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1927.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations