Structural Properties of Contact Lens Materials

  • M. Casini
Part of the FIDIA Research Series book series (FIDIA, volume 11)


Polymer chemistry has contributed greatly to the evolution of contact lens industry. Although some contact lenses were used before the development of polymer science, the commercial availability of PMMA (polymethylmethacrylate) and p(HEMA) (2-polyhydroxyethylmethacrylate) has facilitated the expansion of the contact lens market.


Contact Lens Itaconic Acid Oxygen Permeability Contact Lens Material Cellulose Acetate Butyrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Refojo M.F. (1984). General polymer characteristics. J. AM. Optom. Ass. 55. 184 - 185.Google Scholar
  2. 2).
    Tighe B.J. (1983). Contact lens materials. MOI March.Google Scholar
  3. 3).
    Peppas N.A, (1981). Properties-based optimization of the structure of polymers for contact lens applications. Contact Int. Lens Med. J. 7: 300 - 314.Google Scholar
  4. 4).
    Casini M. (1982). Criteri generali per lo sviluppo di nuovi materiali. AIO Atti 2, Regione Triveneto, 85 - 92.Google Scholar
  5. 5).
    Refojo M.F. (1985). Polymers in contact lenses: an overview. Current Eye Research 4: 719 - 723.PubMedCrossRefGoogle Scholar
  6. 6).
    Stahl N.O., Ivani 0. (1974). Report on laboratory studies and preliminary clinical application of a gas-permeable plastic contact lens. J. Am. Optom. Ass. 45: 302-307.Google Scholar
  7. 7).
    Kreiner C. (1980). Kontactlinsenchemie. Median-Verlag Heidelberg pp. 95 - 96.Google Scholar
  8. 8).
    Lowther G.E. (1983). Gas permeable rigid contact lenses. Optometry Documenta.Google Scholar
  9. 9).
    Feldman G.I. (1977). Chemical and physical properties of cellulose acetate butyrate as related to contact lenses. Contact Lens J. 11: 25 - 31.Google Scholar
  10. 10).
    Pearson R.M. (1975). Dimensional stability of several hard contact lens materials. Am. J. Opt. & Phy. Optics 54: 826 - 833.CrossRefGoogle Scholar
  11. 11).
    Germ. Offen. 2.856.891.Google Scholar
  12. 12).
    Olson A. (1986). Rigid gas permeable contact lenses, in "Polymer chemistry", Bennet E.S., Grohe R.M. (eds).Google Scholar
  13. Professional Press, New York; pp 77-92.Google Scholar
  14. 13).
    Olson A. (1982). Surface properties: wettability and adsorption. Contact Lens J. 10: 11 - 15.Google Scholar
  15. 14).
    Grieco A. (1984). Freedom choice: a gas-permeable materials overview. Int. Contact Lens Clinic. 11: 720 - 729.Google Scholar
  16. 15).
    U.S. Patent 4.581.184; U.S. Patent 4. 243. 790.Google Scholar
  17. 16).
    U.S. Patent 3.542.461; U.S. Patent 3.940. 207; U.S. Patent 3. 944. 347.Google Scholar
  18. 17).
    Keates R.H., Inhlenfeld J.V., Isaacson W.B. (1984). An introduction to Fluoropolymer contact lenses: a new class of materials. CLAO J. 10: 332 - 334.PubMedGoogle Scholar
  19. 18).
    Caroline P.J., Ellis E.J. (1986). Review of the mechanism of oxygen transport through rigid gas permeable lenses. Int. Eyecare 2: 210-213.Google Scholar
  20. 19).
    Hwang S., Tang T.E.S., Kammermeyer K. (1971). Transport of dissolved oxygen through silicone rubber membrane. J. Macromol. Sci-Phys B5(1): 1-10.Google Scholar
  21. 20).
    Peppas N.A. (1982). Contact lenses as biomedical polymers, in: "Extended wear contact lenses for aphakia and miopia", J. Hartstein Ed, C.V. Mosby, St. Louis pp. 6 - 43.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • M. Casini
    • 1
  1. 1.Divisione Lenti a ContattoGruppo di studio Carl Zeiss S.p.A.MilanoItaly

Personalised recommendations