Introduction to Bifurcation Theory and its Applications to Elasticity

  • Stuart S. Antman
Part of the Applied Mathematical Sciences book series (AMS, volume 107)


If a naturally straight thin rod, such as a plastic or metal ruler, is subjected to a small compressive thrust applied to its ends, it remains straight. If the thrust is slowly increased beyond a certain critical value, called the buckling load, the rod assumes a configuration, called a buckled state, that is not straight. See Fig. 1.1. This process is called buckling. Depending on the precise mode of loading and the nature of the rod, the transition to a buckled state can be very rapid. If the thrust is further increased, the deflection of the rod from its straight state is likewise increased. If this entire process is repeated, the rod may well buckle into another configuration such as the reflection of the first through a plane of symmetry. The performance of a whole series of such experiments on different rods would lead to the observation that the buckling loads and the nature of buckled states depend upon the material and shape of the rod and upon the manner in which it is supported at its ends. It can also be observed that the results of experiments are highly sensitive to slight deviations of the rod from perfect straightness or of the thrust from perfect symmetry. The study of buckling for different bodies is one of the richest sources of important problems in nonlinear solid mechanics.


Bifurcation Diagram Bifurcation Point Bifurcation Theory Basic Theorem Algebraic Multiplicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Stuart S. Antman
    • 1
  1. 1.Department of Mathematics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations