Skip to main content

The Metropolis—Hastings Algorithm

  • Chapter
Monte Carlo Statistical Methods

Part of the book series: Springer Texts in Statistics ((STS))

Abstract

This chapter is the first of a series on simulation methods based on Markov chains. However, it is a somewhat strange introduction because it contains a description of the most general algorithm of all. The next chapter (Chapter 8) concentrates on the more specific slice sampler, which then introduces the Gibbs sampler (Chapters 9 and 10), which, in turn, is a special case of the Metropolis–Hastings algorithm. (However, the Gibbs sampler is different in both fundamental methodology and historical motivation.)

“What’s changed, except what needed changing?” And there was something in that, Cadfael reflected. What was changed was the replacement of falsity by truth... Ellis Peter, The Confession of Brother Haluin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  • Kemeny, J. and Snell, J. (1960). Finite Markov Chains. Van Nostrand, Princeton.

    MATH  Google Scholar 

  • Mykland, P., Tierney, L., and Yu, B. (1995). Regeneration in Markov chain samplers. J. American Statist. Assoc., 90: 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Schruben, L., Singh, H., and Tierney, L. (1983). Optimal tests for initialization bias in simulation output. Operation. Research, 31: 1176–1178.

    Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist., 22: 1701–1786.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state spaces. Ann. Applied Prob., 8 (1): 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. and Kadane, J. (1986). Accurate approximations for posterior moments and marginal densities. J. American Statist. Assoc., 81: 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L., Kass, R., and Kadane, J. (1989). Fully exponential Laplace approximations to expectations and variances of non-positive functions. J. American Statist. Assoc., 84: 710–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney, L. and Mira, A. (1998). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine, 18: 2507–2515.

    Article  Google Scholar 

  • Mira, A. and Geyer, C. (1998). Ordering Monte Carlo Markov chains. Technical report, Univ. of Minnesota.

    Google Scholar 

  • Mira, A., Moller, J., and Roberts, G. (2001). Perfect slice samplers. J. Royal Statist. Soc. Series B, 63: 583–606.

    Article  MathSciNet  Google Scholar 

  • Tierney, L. and Mira, A. (1998). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine, 18: 2507–2515.

    Article  Google Scholar 

  • Brooks, S., Dellaportas, P., and Roberts, G. (1997). A total variation method for diagnosing convergence of MCMC algorithms. J. Comput. Graph. Statist., 6: 251–265.

    MathSciNet  Google Scholar 

  • Grenander, U. and Miller, M. (1994). Representations of knowledge in complex systems (with discussion). J. Royal Statist. Soc. Series B, 56: 549–603.

    MathSciNet  MATH  Google Scholar 

  • Phillips, D. and Smith, A. (1996). Bayesian model comparison via jump diffusions. In Gilks, W., Richardson, S., and Spiegelhalter, D., editors, Markov chain Monte Carlo in Practice, pages 215–240. Chapman and Hall, New York.

    Google Scholar 

  • Brooks, S., Fan, Y., and Rosenthal, J. (2002). Perfect forward simulation via simulation tempering. Technical report, Department of Statistics, Univ. of Cambridge.

    Google Scholar 

  • Cowles, M. and Rosenthal, J. (1998). A simulation approach to convergence rates for Markov chain Monte Carlo. Statistics and Computing, 8: 115–124.

    Article  Google Scholar 

  • Corcoran, J. and Tweedie, R. (2002). Perfect sampling from independent Metropolis-Hastings chains. J. Statist. Plana. Inference, 104 (2): 297–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Foss, S. and Tweedie, R. (1998). Perfect simulation and backward coupling. Stochastic Models, 14: 187–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Mengersen, K. and Tweedie, R. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist., 24: 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Roberts, G. and Tweedie, R. (1995). Exponential convergence for Langevin diffusions and their discrete approximations. Technical report, Statistics Laboratory, Univ. of Cambridge.

    Google Scholar 

  • Roberts, G. and Tweedie, R. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms Biometrika, 83: 95–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, G. and Tweedie, R. (2004). Understanding MCMC. Springer-Verlag, New York.

    Google Scholar 

  • Stramer, O. and Tweedie, R. (1999a). Langevin-type models I: diffusions with given stationary distributions, and their discretizations. Methodology and Computing in Applied Probability, 1: 283–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Stramer, O. and Tweedie, R. (1999b). Langevin-type models II: Self-targeting candidates for Hastings-Metropolis algorithms. Methodology and Computing in Applied Probability, 1: 307–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Stramer, O. and Tweedie, R. (1999b). Langevin-type models II: Self-targeting candidates for Hastings-Metropolis algorithms. Methodology and Computing in Applied Probability, 1: 307–328.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robert, C.P., Casella, G. (2004). The Metropolis—Hastings Algorithm. In: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4145-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4145-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1939-7

  • Online ISBN: 978-1-4757-4145-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics