Microglial Response in the Axotomized Facial Motor Nucleus

  • Gennadij Raivich


The activation of microglial cells in the central nervous system following peripheral facial nerve injury is in many ways similar to that following other forms of trauma and brain pathology. Injury to the nervous system triggers a variety of morphologic and metabolic changes that appear to play a key role in two crucial physiological processes: protection against infectious agents and repair of the damaged nervous tissue. The activation of microglial cells, a macrophage- and monocyte-related, brain-resident cell, is a highly cellular response. The axotomized facial motor nucleus has turned into one of the key in vivo models to dissect the molecular mechanisms involved in neuronal survival, axonal regeneration and the activation of microglia and their role in the overall network of posttraumatic response. This chapter will describe the microglial response in the facial motor nucleus in terms of morphology and activation markers, summarize the current data on the associated molecular mechanisms, and discuss the biological function subserved by this highly conserved cellular reaction.


Major Histocompatibility Complex Major Histocompatibility Complex Class Facial Nerve Microglial Cell Microglial Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 639:171–174.PubMedCrossRefGoogle Scholar
  2. Alheim K, Bartfai T (1998). The interleukin-1 system: receptors, ligands, and ICE in the brain and their involvement in the fever response. Ann NY Acad Sci. 840:51–58.PubMedCrossRefGoogle Scholar
  3. Angelov DN, Gunkel A, Stennert E, Neiss WF (1995). Phagocytic microglia during delayed neuronal loss in the facial nucleus of the rat-time course of the neuronofugal migration of brain macrophages. GLIA. 13:113–129.PubMedCrossRefGoogle Scholar
  4. Angelov DN, Neiss WF, Streppel M, Walther M, Guntinas-Lichius O, Stennert E (1996). ED2-positive perivascular cells act as neuronophages during delayed neuronal loss in the facial nucleus of the rat. GLIA 16:129–139.PubMedCrossRefGoogle Scholar
  5. Berezovskaya O, Maysinger D, Fedoroff S (1995). The hematopoietic cytokine, colonystimulating factor 1, is also a growth factor in the CNS: congenital absence of CSF-1 in mice results in abnormal microglial response and increased neuron vulnerability to injury. Int J Dev Neurosci 13:285–299.PubMedCrossRefGoogle Scholar
  6. Bohatschek M, Gschwendtner A, Von Maltzan X, Kloss CUA, Pfeffer K, Labow M, Bluthmann H, Kreutzberg GW, Raivich G (1999). Cytokine-mediated regulation of MHC1, MHC2 and B7–2, in the axotomized mouse facial motor nucleus. Soc Neurosci Abs 25:15–35Google Scholar
  7. Bohatschek M, Werner A, Raivich G (2001). Systemic lipopolysaccharide injection leads to granulocyte influx into normal and injured brain: Effects of ICAM-1 Deficiency. Exp Neurol, (in press).Google Scholar
  8. Bretscher P, Cohn M (1970). A theory of self-nonself discrimination. Science 169 1042–1049PubMedCrossRefGoogle Scholar
  9. Brocker T, Riedinger M, Karjalainen K (1997). Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med. 185 541–550.PubMedCrossRefGoogle Scholar
  10. Bruccoleri A, Harry GJ (2000). Chemical-induced hippocampal neurodegeneration and elevations in TNF alpha, TNF beta, IL-1 alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. J Neurosci Res 62:146–155PubMedCrossRefGoogle Scholar
  11. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996). Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med 2:788–794.PubMedCrossRefGoogle Scholar
  12. Butter C, O’Neill JK, Baker D, Gschmeissner SE, Turk JL (1991). An immunoelectron microscopical study of the expression of class II major histocompatibility complex during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice. J Neuroimmunol 33 37–42.PubMedCrossRefGoogle Scholar
  13. Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D, Shaw C, Wood A, Scolding N (1997). Glial lineages and myelination in the central nervous system. J Anat 190:161–200.PubMedCrossRefGoogle Scholar
  14. Deckert-Schluter M, Bluethmann H, Rang A, Hof H, Schluter D (1998). Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 160:3427–3436.PubMedGoogle Scholar
  15. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F (1995). The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol 54 175–187.PubMedCrossRefGoogle Scholar
  16. Engelhardt B, Martin-Simonet MT, Rott LS, Butcher EC, Michie SA (1998). Adhesion molecule phenotype of T lymphocytes in inflamed CNS. J Neuroimmunol 84 92–104.PubMedCrossRefGoogle Scholar
  17. Fishman PS, Savitt JM (1989). Selective localization by neuroglia of immunoglobulin G in normal mice. J Neuropathol Exp Neurol 48 212–220.PubMedCrossRefGoogle Scholar
  18. Galiano M, Liu ZQ, Roger Kalla, Bohatschek M, Koppius A, Gschwendtner A, Xu SL, Werner A, Kloss C, Bluethmann H, Raivich G (2001). Interleukin-6 (IL6) and the cellular response following facial nerve injury: Effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci, 14:327–341.PubMedCrossRefGoogle Scholar
  19. Giulian D, Ingeman JE (1988). Colony stimulating factors as promoters of ameboid microglia. J Neurosci 8:4707–4717.PubMedGoogle Scholar
  20. Graeber MB, Streit WJ, Kreutzberg GW (1989). Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res 22 103–106.PubMedCrossRefGoogle Scholar
  21. Graeber MB, Streit WJ, Kreutzberg GW (1988a). The microglial cytoskeleton vimentin is localized with activated cells in situ. J Neurocytol 17 573–580.PubMedCrossRefGoogle Scholar
  22. Graeber MB, Tetzlaff W, Streit WJ, Kreutzberg GW (1988b). Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett 85:317–321.PubMedCrossRefGoogle Scholar
  23. Hailer NP, Bechmann I, Heizmann S, Nitsch R (1997). Adhesion molecule expression on phagocytic microglial cells following anterograde degeneration of perforant path axons. Hippocampus 7:341–349.PubMedCrossRefGoogle Scholar
  24. Hao C, Guilbert LJ, Fedoroff S (1990). Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J Neurosci Res 27:314–323.PubMedCrossRefGoogle Scholar
  25. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Nat Acad Sci USA 95:10896–901PubMedCrossRefGoogle Scholar
  26. Hopkins SJ, Rothwell NJ (1995). Cytokines and the nervous system: expression and recognition. Trends Neurosci 18:83–88.PubMedCrossRefGoogle Scholar
  27. Horvat A, Schwaiger FW, Hager G, Streif R, Probst JC, Ullrich A, Kreutzberg GW (2000). Modified activation of glial cells in protein tyrosine phophatase PTP1C mutant mice during regeneration of the axotomised facial nerve. J Neurosci (in press).Google Scholar
  28. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP, Rapoport DA, Berman JW (1993). Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol 150:2525–2533.Google Scholar
  29. Hynes RO (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.PubMedCrossRefGoogle Scholar
  30. Ingalls RR, Golenbock DT (1995). CD 11 c/CD 18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 181 1473–1479.PubMedCrossRefGoogle Scholar
  31. Jones LL, Kreutzberg GW, Raivich G (1997). Regulation of CD44 in the regenerating mouse facial motor nucleus. Eur J Neurosci 9:1854–1863PubMedCrossRefGoogle Scholar
  32. Jones LL, Doetschman T, Kreutzberg GW, Raivich G (1998a). Neuroglial activation in the injured central nervous system: role of transforming growth factor-β1 . Soc Neurosci Abstr 24:710.2.Google Scholar
  33. Jones LL, Kreutzberg GW, Raivich G (1998b). Transforming growth factor-β’s 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res 795 301–306.PubMedCrossRefGoogle Scholar
  34. Jones LL, Liu ZQ, Shen J, Werner A, Kreutzberg GW, Raivich G (2000). Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain.J Comp Neurol, 426:468–492.PubMedCrossRefGoogle Scholar
  35. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114.PubMedCrossRefGoogle Scholar
  36. Jungi TW, Pfister H, Sager H, Fatzer R, Vandevelde M, Zurbriggen A (1997). Comparison of inducible nitric oxide synthase expression in the brains of Listeria monocytogenesinfected cattle, sheep, and goats and in macrophages stimulated in vitro. Infect Immun 65:5279–5288.PubMedGoogle Scholar
  37. Kalla R, Liu ZQ, Xu SL, Koppius A, Imai Y, Kloss CUA, Kohsaka S., Gschwendtner G, Möller CJ, Werner A, Raivich G (2001). Microglia and the early phase of immune surveillance in the injured axotomized facial motor nucleus: Impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in the MCSF-deficient mice. J Comp Neurol 436:182–201.PubMedCrossRefGoogle Scholar
  38. Kiefer R, Lindholm D, Kreutzberg GW (1993). Interleukin-6 and transforming growth factor-beta-1 mRNAs are induced in rat facial nucleus following motoneuron axotomy. Eur J Neurosci 5:775–781.PubMedCrossRefGoogle Scholar
  39. Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung H (1995). Transforming growth factor-beta-1: A lesion-associated cytokine of the nervous system. Int J Dey Neurosci 13:331–339.CrossRefGoogle Scholar
  40. Klein MA, Möller JC, Jones LL, Bluethmann H, Kreutzberg GW, Raivich G (1997). Impaired neuroglial activation in Interleukin-6 deficient mice. GLIA 19 227–233.PubMedCrossRefGoogle Scholar
  41. Kloss CUA, Kreutzberg GW, Raivich G (1997). Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. J Neurosci Res 49:248–254.PubMedCrossRefGoogle Scholar
  42. Kloss CUA, Werner A, Shen J, Klein MA, Kreutzberg GW, Raivich G (1999). The integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial nucleus. J Comp Neurol 441:162–178.CrossRefGoogle Scholar
  43. Kösel S, Egensperger R, Bise K, Arbogast S, Mehraein P, Graeber MB (1997). Longlasting perivascular accumulation of major histocompatibility complex class II-positive lipophages in the spinal cord of stroke patients: possible relevance for the immune privilege of the brain. Acta Neuropathol 94:532–538.CrossRefGoogle Scholar
  44. Krakowski M, Owens T (1996). Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 26:1641–1646.PubMedCrossRefGoogle Scholar
  45. Kreutzberg GW (1966). Autoradiographische Untersuchungen über die Beteiligung von Gliazellen an der axonalen Reaktion im Fazialiskern der Ratte. Acta Neuropathol 7:149–161.CrossRefGoogle Scholar
  46. Liu L, Tornqvist E, Mattsson P, Eriksson NP, Persson JK, Morgan BP, Aldskogius H, Svensson M (1995). Complement and clusterin in the spinal cord dorsal horn and gracile nucleus following sciatic nerve injury in the adult rat. Neuroscience 68:167–179.PubMedCrossRefGoogle Scholar
  47. Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y, Giroud C, Monso-Hinard C, De Kesel T, Buurman WA, Moore MW, Dayer JM, Fiers W, Bluethmann H, Grau GE (1997). Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol 27:1719–1725.PubMedCrossRefGoogle Scholar
  48. McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993). Microglia in degenerative neurological disease. GLIA 7:84–92.PubMedCrossRefGoogle Scholar
  49. Merzbacher L (1909). Untersuchungen über die Morphologie und Biologie der Abräumzellen im Zentralnervensystem. Fischer-Verlag, Stuttgart.Google Scholar
  50. Möller JC, Klein MA, Haas S, Jones L.L, Kreutzberg GW, Raivich G (1996). Regulation of thrombospondin in the regenerating mouse facial nucleus. Glia 17:121–132.PubMedCrossRefGoogle Scholar
  51. Moneta ME, Gehrmann J, Topper R, Banati RB, Kreutzberg GW (1993). Cell adhesion molecule expression in the regenerating rat facial nucleus. J Neuroimmunol 45:203– 206.PubMedCrossRefGoogle Scholar
  52. Morganti-Kossmann MC, Kossmann T, Wahl SM (1992). Cytokines and neuropathology. Trends Pharmacol Sci 1992, 13 286–291.CrossRefGoogle Scholar
  53. Nissl F (1899). Über einige Beziehungen zwischen Nervenzellenerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch Psych 32:1–21.CrossRefGoogle Scholar
  54. Perry VH, Hume DA, Gordon S (1985). Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neurosci 15:313–326.CrossRefGoogle Scholar
  55. Raivich G, Gehrmann J, Kreutzberg GW (1991). Increase of macrophage colonystimulating factor and granulocyte-macrophage colony stimulating factor receptors in the regenerating rat facial nucleus. J Neurosci Res 30:682–686.PubMedCrossRefGoogle Scholar
  56. Raivich G, Gehrmann J, Graeber MB, Kreutzberg GW (1993). Quantitative immunohistochemistry in the rat facial nucleus with iodine-125 iodinated secondary antibodies and in-situ autoradiography non-linear binding characteristics of primary monoclonal and polyclonal antibodies. J Histochem Cytochem 41:579–592.PubMedCrossRefGoogle Scholar
  57. Raivich G, Moreno-Flores MT, Möller JC, Kreutzberg GW (1994). Inhibition of posttraumatic microglial proliferation in a genetic model of macrophage colony-stimulating factor deficiency in the mouse. Eur J Neurosci 6:1615–1618.PubMedCrossRefGoogle Scholar
  58. Raivich G, Jones LL, Kloss CUA, Werner A, Neumann H, Kreutzberg GW (1998a). Immune surveillance in the injured nervous system: T- lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J. Neurosci 18 (1998) 5804–5816.PubMedGoogle Scholar
  59. Raivich G, Haas S, Werner A, Klein MA, Kloss CUA, Kreutzberg GW (1998b). Regulation of MCSF receptors on microglia in the normal and injured mouse central nervous system: A quantitative immunofluorescence study using confocal laser microscopy. J Comp Neurol 395:342–358.PubMedCrossRefGoogle Scholar
  60. Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW (1999a). Neuroglial activation repertoire in the injured brain: Graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105.PubMedCrossRefGoogle Scholar
  61. Raivich G, Jones LL, Werner A, Blüthmann H, Doetschmann T, Kreutzberg GW (1999b). Molecular signals for glial activation: Pro- and anti-inflammatory cytokines in the injured brain. Acta Neurochir [Suppl] 73:21–30.Google Scholar
  62. Raivich G, Galiano M, Jones LL, Kloss CUA, Werner A, Bluethmann H, Kreutzberg GW (1999c). Lymphocyte infiltration into the injured brain: Role of proinflammatory cytokines IL1, IL6 and TNFa. Ann Anat 181 S43–S44.Google Scholar
  63. Río Hortega Pd (1932). Microglia. In: Cytology and Cellular Pathology of the Nervous System. (E. Penfield, ed.), Paul B. Hoeber, New York, Vol. II, pp. 481–534.Google Scholar
  64. Robey E, Allison JP (1995). T- cell activation: integration of signals from the antigen receptor and costimulatory molecules. Immunol Today 16:306–310.PubMedCrossRefGoogle Scholar
  65. Roth P, Stanley E (1992). The biology of CSF-1 and its receptor. Curr Topics Microbiol Immunol 181:141–167.CrossRefGoogle Scholar
  66. Sawada M, Suzumura A, Yamamoto H, Marunouchi T (1990). Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res 509:119–124.PubMedCrossRefGoogle Scholar
  67. Schafer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sim RB, Petry F, Loos M, Weihe E (2000). Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol 164:5446–5452.PubMedGoogle Scholar
  68. Scharton-Kersten TM, Yap G, Magram J, Sher A (1997). Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185:1261–1273.PubMedCrossRefGoogle Scholar
  69. Schiefer J, Kampe K, Dodt HU, Zieglgansberger W, Kreutzberg GW (1999). Microglial motility in the rat facial nucleus following peripheral axotomy. J Neurocytol 28:439–453.PubMedCrossRefGoogle Scholar
  70. Schmitt AB, Brook GA, Buss A, Nacimiento W, Noth J, Kreutzberg GW (1998). Dynamics of microglial activation in the spinal cord after cerebral infarction are revealed by expression of MHC class II antigen. Neuropathol Appl Neurobiol 24 167–176.PubMedCrossRefGoogle Scholar
  71. Schwaiger FW, Fluegel A, Hager G, Horvat A, Spitzer C, Graeber MB, Kreutzberg GW (1999). Neuronal expression of MCP-1 following a remote lesion of the CNS. Soc Neurosci Abs 25:1275.Google Scholar
  72. Seilhean D, Kobayashi K, He Y, Uchihara T, Rosenblum O, Katlama C, Bricaire F, Duyckaerts C, Hauw JJ (1997) Tumor necrosis factor-alpha, microglia and astrocytes in AIDS dementia complex. Acta Neuropath 93:508–517.PubMedCrossRefGoogle Scholar
  73. Sjöstrand J (1966). Studies on glial cells in the hypoglossal nucleus of the rabbit during nerve regeneration. Acta Physiol Scand 67/Suppl. 270:1–17.Google Scholar
  74. Streit WJ, Kreutzberg GW (1988). Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263.PubMedCrossRefGoogle Scholar
  75. Streit WJ, Graeber MB, Kreutzberg GW (1989a). Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21:117–123.PubMedCrossRefGoogle Scholar
  76. Streit WJ, Graeber MB, Kreutzberg GW (1989b). Expression of la antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105 115–16.PubMedCrossRefGoogle Scholar
  77. Streit WJ, Sparks DL (1997). Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med 75 130–138.PubMedCrossRefGoogle Scholar
  78. Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT (1998). Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 152:74–87.PubMedCrossRefGoogle Scholar
  79. Svensson M, Aldskogius H (1993). Regeneration of hypoglossal nerve axons following blockade of the axotomy-induced microglial cell reaction in the rat. Eur J Neurosci 5:85–94.PubMedCrossRefGoogle Scholar
  80. Suzumura A, Metzitis SGE, Gonatas NK, Silberberg DH (1987). MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: Induction of la antigen expression by γ-interferon. J Neuroimmunol 15:263–278.PubMedCrossRefGoogle Scholar
  81. Suzumura A, Sawada M, Yamomoto H, Marunouchi T (1990). Effects of colony stimulating factors on isolated microglia in vitro. J Neuroimmunol 30:111–120.PubMedCrossRefGoogle Scholar
  82. Torvik A, Skjorten F (1971) Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. II. Changes in the glial cells. Acta Neuropathol 17:265 – 282.Google Scholar
  83. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M (1997). Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metabol 17:491–499.Google Scholar
  84. Unsicker K, Meier C, Krieglstein K, Sartor BM, Flanders KC (1996). Expression, localization and function of transforming growth factor-beta s in embryonic chick spinal cord, hindbrain and dorsal root ganglia. J Neurobiol 29:262–276.PubMedCrossRefGoogle Scholar
  85. Werner A, Kloss CUA, Walter J, Kreutzberg GW, Raivich G (1998). Intercellular adhesion molecule-1 (ICAM 1) in the regenerating mouse facial motor nucleus. J Neurocytol 27 219–232.PubMedCrossRefGoogle Scholar
  86. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Ahmed-Ansari A, Sell KW, Pollard JW, Stanlay ER (1990). Total absence of colony-stimulating factor 1 in the macrophagedeficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832.PubMedCrossRefGoogle Scholar
  87. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996). IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157 3223–3227.PubMedGoogle Scholar
  88. Yang GY, Gong C, Qin Z, Ye W, Mao Y, Betz AL (1998). Inhibition of TNFalpha attenuates infarct volume and ICAM-1 expression in ischemic mouse brain. Neuro-Report 9:2131–2134.Google Scholar
  89. Yoshida H, Hayashi S-I, Kunisasa Z, Ogaea M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa SI (1990). The murine mutation osteopetrosis is in the coding region of the macrophages colony stimulating factor gene. Nature 345 442–444.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gennadij Raivich

There are no affiliations available

Personalised recommendations