Skip to main content

Role of Microglia and Macrophages in Secondary Injury of the Traumatized Spinal Cord: Troublemakers or Scapegoats?

  • Chapter
Microglia in the Regenerating and Degenerating Central Nervous System

Abstract

Spinal cord injury (SCI) initiates a cascade of cellular and biochemical reactions that propagate tissue damage beyond the original site of trauma. In theory, circumventing this destructive secondary pathology will lead to increased preservation of neurons and glia, and presumably to functional recovery. However, the actual onset, duration and mechanisms of secondary neuronal injury are poorly understood. To date, numerous mechanisms of secondary injury have been proposed including the possibility that microglia and macrophages play a role in lesion expansion. In 1985, Blight saw in a cat model of SCI that axons surviving the initial mechanical trauma did not undergo significant demyelination until at least two days post-injury. Because delayed demyelination correlated with the timing of significant macrophage influx, and large lipid-filled macrophages were closely apposed to denuded axons, Blight postulated a role for macrophages in secondary injury (Blight (1985); Blight (1992)). Later independent studies in guinea pig, rabbit and rodent models of SCI supported this notion that inflammation in general, and macrophages in particular, contribute to delayed secondary injury (Giulian and Robertson (1990); Blight (1994); Blight et al. (1995); Popovich et al. (1999)) (Guth et al. (1994a); Guth et al. (1994b); Zhang et al. (1997)) . Owing to their ability to release prodigious amounts of noxious chemicals and enzymes involved in host defense, it is reasonable to assume a role for macrophages in acute neuronal injury, microvascular damage and delayed demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberati-Giani D, Ricciardi-Castagnoli P, Kohler C, Cesura AM (1996). Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 66: 996–1004.

    Article  PubMed  CAS  Google Scholar 

  • Andersson PB, Perry VH, Gordon S (1992). The acute inflammatory response to lipopolysaccharide in CNS. Neuroscience 48: 169–186.

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993). Cytotoxicity of microglia. Glia 7: 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Graeber MB (1994). Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dey Neurosci 16: 114–127.

    Article  CAS  Google Scholar 

  • Banati RB, Rothe G, Valet G, Kreutzberg GW (1991). Respiratory burst activity in brain macrophages: a flow cytometric study on cultured rat microglia. Neuropathol Appl Neurobiol 17: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995). The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15: 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Berezovskaya O, Maysinger D, Fedoroff S (1995). The hematopoietic cytokine, colonystimulating factor 1, is also a growth factor in the CNS: congenital absence of CSF-1 in mice results in abnormal microglial response and increased neuron vulnerability to injury. Int J Dev Neurosci 13: 285–299.

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1985). Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. CNS Trauma 2: 299–315.

    CAS  Google Scholar 

  • Blight AR (1992). Macrophages and inflammatory damage in spinal cord injury. J Neurotrauma 9 Suppl 1: S83—S91.

    PubMed  Google Scholar 

  • Blight AR (1994). Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60: 263–273.

    Article  PubMed  CAS  Google Scholar 

  • Blight AR, Cohen TI, Saito K, Heyes MP (1995). Quinolinic acid accumulation and functional deficits following experimental spinal cord injury. Brain 118: 735–752.

    Article  PubMed  Google Scholar 

  • Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996). Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2: 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998). Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151: 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ (2000). Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci (online) 20:RC87.

    PubMed  CAS  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen S-HC, Brosnan C (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra CD, De Groot CJ, Huitinga I (1992). The role of macrophages in demyelination. J Neuroimmunol 40: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Dobbertin A, Schmid P, Gelman M, Glowinski J, Mallat M (1997). Neurons promote macrophage proliferation by producing transforming growth factor-β2. J Neurosci 17: 5305–5315.

    PubMed  CAS  Google Scholar 

  • Dusart I, Schwab ME (1994). Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6: 712–724.

    Article  PubMed  CAS  Google Scholar 

  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999). Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19: 8182–8198.

    PubMed  CAS  Google Scholar 

  • Fitch MT, Silver J (1997). Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148:587–603.

    Article  PubMed  CAS  Google Scholar 

  • Frei E, Klusman I, Schnell L, Schwab ME (2000). Reactions of oligodendrocytes to spinal cord injury: cell survival and myelin repair. Exp Neurol 163: 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Aihara N, Sagar SM, Sharp FR, Pitts LH, Honkaniemi J, Noble LJ (1996). Purkinje cell vulnerability to mild traumatic brain injury. J Neurotrauma 13: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Banati RB (1995). Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54: 680–688.

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Bonnekoh P, Miyazawa T, Hossmann KA, Kreutzberg GW (1992). Immunocytochemical study of an early microglial activation in ischemia. J Cereb Blood Flow Metab 12: 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D (1987). Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 18: 155–71, 132–3.

    Google Scholar 

  • Giulian D (1993). Reactive glia as rivals in regulating neuronal survival. Glia 7:102–110.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ (1986). Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6: 2163–2178.

    PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ, Shih LN, Lachman LB (1986). Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164: 594–604.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989). The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 9: 4416–4429.

    PubMed  CAS  Google Scholar 

  • Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993). Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36: 681–693.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Ingeman JE (1988). Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8: 4707–4717.

    PubMed  CAS  Google Scholar 

  • Giulian D, Lachman LB (1985). Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 228: 497–499.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Robertson C (1990). Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27: 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990). Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250: 1593–1596.

    Article  PubMed  CAS  Google Scholar 

  • Gledhill RF, Harrison BM, McDonald WI (1973). Demyelination and remyelination after acute spinal cord compression. Exp Neurol 38: 472–487.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen R, Lambertsen K, Finsen B (2000). Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20: 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Zhang Z, DiProspero NA, Joubin K, Fitch MT (1994a). Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol 126: 76–87.

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Zhang Z, Roberts E (1994b). Key role for pregnenolone in combination therapy that promotes recovery after spinal cord injury. Proc Natl Acad Sci USA 91: 12308–12312.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95: 10896–10901.

    Article  PubMed  CAS  Google Scholar 

  • Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner E, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000). Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20: 6421–6430.

    PubMed  CAS  Google Scholar 

  • Hume DA, Perry VH, Gordon S (1984). The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20: 6309–6316.

    PubMed  CAS  Google Scholar 

  • Koshinaga M, Whittemore SR (1995). The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. J Neurotrauma 12: 209–222.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996). Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Lees GJ (1993). The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 114: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H (1992). Transforming growth factor-β1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Hengerer B, Zafra F, Thoenen H (1990). Transforming growth factor-β1 stimulates expression of nerve growth factor in the rat CNS. Neuroreport 1: 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1998). TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4: 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Sobel RA (1996). Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55: 300–309.

    Article  PubMed  CAS  Google Scholar 

  • Mautes AE, Fukuda K, Noble LJ (1996). Cellular response in the cerebellum after midline traumatic brain injury in the rat. Neurosci Lett 214: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Means ED, Anderson DK (1983). Neuronophagia by leukocytes in experimental spinal cord injury. J Neuropathol Exp Neurol 42: 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MA (1997). Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 144: 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1992). Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 83: 149–157.

    Article  CAS  Google Scholar 

  • Mrak RE, Griffin WS (1997). The role of chronic self-propagating glial responses in neurodegeneration: implications for long-lived survivors of human immunodeficiency virus. J Neurovirol 3: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Hume DA (1985). Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15: 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Guan Z, Wei P, Huitinga I, Van Rooijen N, Stokes BT (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158: 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997a) The cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377: 443–464.

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Yu JY, Whitacre CC (1997b). Spinal cord neuropathology in rat experimental autoimmune encephalomyelitis: modulation by oral administration of myelin basic protein. J Neuropathol Exp Neurol 56: 1323–1338.

    Article  PubMed  CAS  Google Scholar 

  • Possel H, Noack H, Putzke J, Wolf G, Sies H (2000). Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: In vitro and in vivo studies. GLIA 32: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997). Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47: 34–48.

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Kloss CUA, Werner A, Neumann H, Kreutzberg GW (1998). Immune surveillance in the injured nervous system: T- lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18: 5804–5816.

    PubMed  CAS  Google Scholar 

  • Ranson PA, Thomas WE (1991). Pinocytosis as a select marker of ramified microglia in vivo and in vitro. J Histochem Cytochem 39: 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg LJ, Wrathall JR (1997). Quantitative analysis of acute axonal pathology in experimental spinal cord contusion. J Neurotrauma 14: 823–838.

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Suzumura A, Yamamoto HAUM (1990). Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res 509: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Shuman SL, Bresnahan JC, and Beattie MS (1997). Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50: 798–808.

    Article  PubMed  CAS  Google Scholar 

  • Smith GM, Hale JH (1997). Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 17: 9624–9633.

    PubMed  CAS  Google Scholar 

  • Stenwig AE (1972). The origin of brain macrophages in traumatic lesions, Wallerian degeneration, and retrograde degeneration. J Neuropathol Exp Neurol 31: 696–704.

    Article  PubMed  CAS  Google Scholar 

  • Stern EL, Quan N, Proescholdt MG, Herkenham M (2000). Spatiotemporal induction patterns of cytokine and related immune signal molecule mRNAs in response to intrastriatal injection of lipopolysaccharide. J Neuroimmunol 106: 114–129.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1988). Functional plasticity of microglia: A review. GLIA 1: 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL (2000). Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 61: 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Kreutzberg GW (1987). Lectin binding by resting and reactive microglia. J Neurocytol 16: 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999). Reactive microgliosis. Prog Neurobiol 57: 563–581.

    Article  PubMed  CAS  Google Scholar 

  • Tator CH, Fehlings MG (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Vass K, Lassmann H (1990). Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 137: 789–800.

    PubMed  CAS  Google Scholar 

  • Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999). Interleukin-1 beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19: 5054–5065.

    PubMed  CAS  Google Scholar 

  • Wakefield CL, Eidelberg E (1975). Electron microscopic observations of the delayed effects of spinal cord compression. Exp Neurol 48: 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kakihana M, Chen LS, Ong M, Baird A, Gage FH (1992). Cytokine regulation of nerve growth factor-mediated cholinergic neurotrophic activity synthesized by astrocytes and fibroblasts. J Neurochem 59: 919–931.

    Article  PubMed  CAS  Google Scholar 

  • Zajicek JP, Wing M, Scolding NJ, Compston DA (1992). Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain 115: 1611–1631.

    PubMed  Google Scholar 

  • Zhang SC, Fedoroff S (1996a). Neuron-microglia interactions in vitro. Acta Neuropathol (Berl) 91: 385–395.

    Article  CAS  Google Scholar 

  • Zhang Z, Guth L (1997). Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Exp Neurol 147: 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Krebs CJ, Guth L (1997). Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Zietlow R, Dunnett SB, Fawcett JW (1999). The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia change microglia from neurotoxic to neuroprotective. Eur J Neurosci 11: 1657–1667.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popovich, P.G. (2002). Role of Microglia and Macrophages in Secondary Injury of the Traumatized Spinal Cord: Troublemakers or Scapegoats?. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics