Advertisement

Calcium Signaling in Microglial Cells

  • Thomas Möller

Abstract

Receptor-mediated changes in the free cytoplasmic Ca2+ concentration ([Ca2+]c) represent one of the major signal transduction pathways by which information from extracellular signals is transferred to intracellular sites. The signal is conveyed by the magnitude, duration and location of the changes in [Ca2+]c, and is usually initiated by the binding of an extracellular signaling molecule / ligand to its plasma membrane receptor. This chapter will provide a brief overview of the basic mechanisms of Ca2+ signaling, describe the available data about microglial [Ca2+]c signals, and discuss current challenges and future directions of this emerging field.

Keywords

Microglial Cell Calcium Signaling Internal Store Endoplasmic Reticu Human Microglia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbracchio MP, Burnstock G (1998). Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145.PubMedGoogle Scholar
  2. Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, Doms RW, Gonzalez-Scarano F (1999). Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73:205–213.PubMedGoogle Scholar
  3. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996). CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958.PubMedGoogle Scholar
  4. Asensio VC, Campbell IL (1999). Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512.PubMedGoogle Scholar
  5. Bader MF, Taupenot L, Ulrich G, Aunis D, Ciesielski-Treska J (1994). Bacterial endotoxin induces [Ca2+]i transients and changes the organization of actin in microglia. Glia 11:336–344.PubMedGoogle Scholar
  6. Barritt GJ (1999). Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337:153–169.PubMedGoogle Scholar
  7. Berger EA, Murphy PM, Farber JM (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700.PubMedGoogle Scholar
  8. Berridge M, Lipp P, Bootman M (1999). Calcium signalling. Curr Biol 9:R157–159.PubMedGoogle Scholar
  9. Berridge MJ (1993). Inositol trisphosphate and calcium signalling. Nature 361:315–325.PubMedGoogle Scholar
  10. Berridge MJ (1997). Elementary and global aspects of calcium signalling. J Physiol (Lond) 499:291–306.Google Scholar
  11. Beutler B (2000). Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20–26.PubMedGoogle Scholar
  12. Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999). Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680.PubMedGoogle Scholar
  13. Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Harter P (1999a). Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374:309–313.PubMedGoogle Scholar
  14. Boddeke EW, Meigel I, Frentzel S, Gourmala NG, Harrison JK, Buttini M, Spleiss O, Gebicke-Harter P (1999b). Cultured rat microglia express functional beta-chemokine receptors. J Neuroimmunol 98:176–184.PubMedGoogle Scholar
  15. Boland K, Behrens M, Choi D, Manias K, Perlmutter DH (1996). The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-beta peptide but not aggregated, cytotoxic amyloid-beta peptide. J Biol Chem 271:18032–18044.PubMedGoogle Scholar
  16. Bootman MD, Berridge MJ (1995). The elemental principles of calcium signaling. Cell 83:675–678.PubMedGoogle Scholar
  17. Ciesielski-Treska J, Ulrich G, Taupenot L, Chasserot-Golaz S, Corti A, Aunis D, Bader MF (1998). Chromogranin A induces a neurotoxic phenotype in brain microglial cells. J Biol Chem 273:14339–14346.PubMedGoogle Scholar
  18. Clapham DE (1995). Calcium signaling. Cell 80:259–268.PubMedGoogle Scholar
  19. Colton CA, Jia M, Li MX, Gilbert DL (1994). K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 266:C1650–1655.PubMedGoogle Scholar
  20. Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407:258–264.PubMedGoogle Scholar
  21. Deitmer JW, Verkhratsky AJ, Lohr C (1998). Calcium signalling in glial cells. Cell Calcium 24:405–416.PubMedGoogle Scholar
  22. Di Virgilio F, Sanz JM, Chiozzi P, Falzoni S (1999). The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor. Prog Brain Res 120:355–368.PubMedGoogle Scholar
  23. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996). A dual-tropic primary HIV-1 isolate that uses fusin and the betachemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158.PubMedGoogle Scholar
  24. Eder C (1998). Ion channels in microglia (brain macrophages). Am J Physiol 275:C327–342.PubMedGoogle Scholar
  25. El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996). Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils [see comments]. Nature 382:716–719.PubMedGoogle Scholar
  26. Fenton MJ, Golenbock DT (1998). LPS-binding proteins and receptors. J Leukoc Biol 64:25–32.PubMedGoogle Scholar
  27. Ferrari D, Stroh C, Schulze-Osthoff K (1999). P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 274:13205–13210.PubMedGoogle Scholar
  28. Ferrari D, Wesselborg S, Bauer MKA, Schulze-Osthoff K (1997). Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol 139:1635–1643.PubMedGoogle Scholar
  29. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996). Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539.PubMedGoogle Scholar
  30. Gale LM, McColl SR (1999). Chemokines: extracellular messengers for all occasions? Bioessays 21:17–28.PubMedGoogle Scholar
  31. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995). Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287.PubMedGoogle Scholar
  32. Goghari V, Franciosi S, Kim SU, Lee YB, McLarnon JG (2000). Acute application of interleukin-1 beta induces Ca2+ responses in human microglia. Neurosci Lett 281:83–86.PubMedGoogle Scholar
  33. Grand RJ, Turnell AS, Grabham PW (1996). Cellular consequences of thrombin-receptor activation. Biochem J 313:353–368.PubMedGoogle Scholar
  34. Hahn J, Jung W, Kim N, Uhm DY, Chung S (2000). Characterization and regulation of rat microglial Ca2+ release-activated Ca2+ (CRAC) channel by protein kinases. Glia 31:118–124.PubMedGoogle Scholar
  35. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci US A 95:10896–10901.Google Scholar
  36. He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997). CCR3 and CCR5 are coreceptors for HIV-1 infection of microglia. Nature 385:645–649.PubMedGoogle Scholar
  37. Hegg CC, Hu S, Peterson PK, Thayer SA (2000). Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98:191–199.PubMedGoogle Scholar
  38. Herms JW, Madlung A, Brown DR, Kretzschmar HA (1997). Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia 21:253–257.PubMedGoogle Scholar
  39. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75:965–972.PubMedGoogle Scholar
  40. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996). A novel gene ibal in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862.PubMedGoogle Scholar
  41. Inoue K, Nakajima K, Morimoto T, Kikuchi Y, Koizumi S, Illes P, Kohsaka S (1998). ATP stimulation of Ca2+-dependent plasminogen release from cultured microglia. Br J Pharmacol 123:1304–1310.PubMedGoogle Scholar
  42. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998). Microglia-specific localisation of a novel calcium binding protein, Ibal. Brain Res Mol Brain Res 57:1–9.PubMedGoogle Scholar
  43. Kong C, Gill BM, Rahimpour R, Xu L, Feldman RD, Xiao Q, McDonald TJ, Taupenot L, Mahata SK, Singh B, O’Connor DT, Kelvin DJ (1998). Secretoneurin and chemoattractant receptor interactions. J Neuroimmunol 88:91–98.PubMedGoogle Scholar
  44. Korotzer AR, Whittemore ER, Cotman CW (1995). Differential regulation by beta-amyloid peptides of intracellular free Ca2+ concentration in cultured rat microglia. Eur J Pharmacol 288:125–130.PubMedGoogle Scholar
  45. Kostyuk P, Verkhratsky A (1994). Calcium stores in neurons and glia. Neuroscience 63:381–404.PubMedGoogle Scholar
  46. Kreutzberg GW (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318.Google Scholar
  47. Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995). Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61:71–78.PubMedGoogle Scholar
  48. Lin H, Zhu YJ, Lal R (1999). Amyloid beta protein (1–40) forms calcium-permeable, Zn2+sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196.PubMedGoogle Scholar
  49. Lin MC, Mirzabekov T, Kagan BL (1997). Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272:44–47.PubMedGoogle Scholar
  50. Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB (1999). Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163:1628–1635.PubMedGoogle Scholar
  51. Masaki T, Vane JR, Vanhoutte PM (1994). International Union of Pharmacology nomenclature of endothelin receptors. Pharmacol Rev 46:137–142.PubMedGoogle Scholar
  52. McLarnon JG, Wang X, Bae JH, Kim SU (1999a). Endothelin-induced changes in intracellular calcium in human microglia. Neurosci Lett 263:9–12.PubMedGoogle Scholar
  53. McLarnon JG, Zhang L, Goghari V, Lee YB, Walz W, Krieger C, Kim SU (1999b). Effects of ATP and elevated K+ on K+ currents and intracellular Ca2+ in human microglia. Neuroscience 91:343–352.PubMedGoogle Scholar
  54. Minelli A, Lyons S, Nolte C, Verkhratsky A, Kettenmann H (2000). Ammonium triggers calcium elevation in cultured mouse microglial cells by initiating Ca2+ release from thapsigargin-sensitive intracellular stores. Pflügers Arch 439:370–377.PubMedGoogle Scholar
  55. Möller T, Hanisch UK, Ransom BR (2000a). Thrombin-induced activation of cultured rodent microglia. J Neurochem 75:1539–1547.PubMedGoogle Scholar
  56. Möller T, Kann O, Verkhratsky A, Kettenmann H (2000b). Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59.PubMedGoogle Scholar
  57. Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997a). Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17:615–624.PubMedGoogle Scholar
  58. Möller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H (1997b). Endothelininduced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport 8:2127–2131.PubMedGoogle Scholar
  59. Morgan BP (2000). The complement system: an overview. Methods Mol Biol 150:1–13.PubMedGoogle Scholar
  60. Morgan BP, Gasque P (1996). Expression of complement in the brain: role in health and disease. Immunology Today 17:461–466.PubMedGoogle Scholar
  61. Morgan BP, Gasque P, Singhrao S, Piddlesden SJ (1997). The role of complement in disorders of the nervous system. Immunopharmacology 38:43–50.PubMedGoogle Scholar
  62. Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T (1996). Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci 16:3590–3600.PubMedGoogle Scholar
  63. Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y (2000). P2 Purinoceptor expression and functional changes of hypoxia-activated cultured rat retinal microglia. Neurosci Lett 282:153–156.PubMedGoogle Scholar
  64. Mukherjee P, Pasinetti GM (2000). The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer’s disease. J Neuroimmunol 105:124–130.PubMedGoogle Scholar
  65. Murdoch C, Finn A (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043.PubMedGoogle Scholar
  66. Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998). Glutamate receptors: brain function and signal transduction. Brain Res Rev 26:230–235.PubMedGoogle Scholar
  67. Noda M, Nakanishi H, Nabekura J, Akaike N (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20:251–258.PubMedGoogle Scholar
  68. Nolte C, Möller T, Walter T, Kettenmann H (1996). Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73:1091–1107.PubMedGoogle Scholar
  69. Nörenberg W, Cordes A, Blohbaum G, Frohlich R, Illes P (1997). Coexistence of purinoand pyrimidinoceptors on activated rat microglial cells. Br J Pharmacol 121:1087–1098.PubMedGoogle Scholar
  70. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [published erratum appears in Nature 1996 Nov 21; 384(6606):288]. Nature 382:833–835.PubMedGoogle Scholar
  71. Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000). Involvement of ibal in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113:3073–3084.PubMedGoogle Scholar
  72. Ozawa S, Kamiya H, Tsuzuki K (1998). Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618.PubMedGoogle Scholar
  73. Parekh AB, Penner R (1997). Store depletion and calcium influx. Physiol Rev 77:901–930.PubMedGoogle Scholar
  74. Paresce DM, Ghosh RN, Maxfield FR (1996). Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565.PubMedGoogle Scholar
  75. Patel S, Joseph SK, Thomas AP (1999). Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264.PubMedGoogle Scholar
  76. Penner R, Fasolato C, Hoth M (1993). Calcium influx and its control by calcium release. Curr Opin Neurobiol 3:368–374.PubMedGoogle Scholar
  77. Pettit EJ, Fay FS (1998). Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 78:949–967.PubMedGoogle Scholar
  78. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000). Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445.PubMedGoogle Scholar
  79. Priller J, Haas CA, Reddington M, Kreutzberg GW (1995). Calcitonin gene-related peptide and ATP induce immediate early gene expression in cultured rat microglial cells. Glia 15:447–457.PubMedGoogle Scholar
  80. Putney JW, Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium 7:1–12.PubMedGoogle Scholar
  81. Putney JW, Jr. (1990). Capacitative calcium entry revisited. Cell Calcium 11:611–624.PubMedGoogle Scholar
  82. Putney JW, Jr., McKay RR (1999). Capacitative calcium entry channels. Bioessays 21:38–46.PubMedGoogle Scholar
  83. Ralevic V, Burnstock G (1998). Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492.PubMedGoogle Scholar
  84. Rhee SK, Quist AP, Lal R (1998). Amyloid beta protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 273:13379–13382.PubMedGoogle Scholar
  85. Righi M, Letari O, Sacerdote P, Marangoni F, Miozzo A, Nicosia S (1995). MYC-immortalized microglial cells express a functional platelet-activating factor receptor. J Neurochem 64:121–129.PubMedGoogle Scholar
  86. Rossi D, Zlotnik A (2000). The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242.PubMedGoogle Scholar
  87. Rubanyi GM, Polokoff MA (1994). Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415.PubMedGoogle Scholar
  88. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998). Chemokines and receptors in HIV encephalitis. Aids 12:1021–1026.PubMedGoogle Scholar
  89. Sanz JM, Di Virgilio F (2000). Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol 164:4893–4898.PubMedGoogle Scholar
  90. Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK (2000). Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin Immunol 96:243–251.PubMedGoogle Scholar
  91. Silei V, Fabrizi C, Venturini G, Salmona M, Bugiani O, Tagliavini F, Lauro GM (1999). Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res 818:168–170.PubMedGoogle Scholar
  92. Silei V, Fabrizi C, Venturini G, Tagliavini F, Salmona M, Bugiani O, Lauro GM (2000). Measurement of intracellular calcium levels by the fluorescent Ca2+ indicator Calcium-Green. Brain Res Protoc 5:132–134.Google Scholar
  93. Sola C, Tusell JM, Serratosa J (1997). Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 81:699–705.PubMedGoogle Scholar
  94. Tanabe S, Heesen M, Yoshizawa I, Berman MA, Luo Y, Bleul CC, Springer TA, Okuda K, Gerard N, Dorf ME (1997). Functional expression of the CXC-chemokine receptor4/fusin on mouse microglial cells and astrocytes. J Immunol 159:905–911.PubMedGoogle Scholar
  95. Taupenot L, Ciesielski-Treska J, Ulrich G, Chasserot-Golaz S, Aunis D, Bader MF (1996). Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience 72:377–389.PubMedGoogle Scholar
  96. Thomas A, Gasque P, Vaudry D, Gonzalez B, Fontaine M (2000). Expression of a complete and functional complement system by human neuronal cells in vitro. Int Immunol 12:1015–1023.PubMedGoogle Scholar
  97. Toescu EC, Möller T, Kettenmann H, Verkhratsky A (1998). Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86:925–935.PubMedGoogle Scholar
  98. Van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A, MacKenzie ET, Fontaine M (2000). Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol 161:373–382.PubMedGoogle Scholar
  99. Verkhratsky A, Orkand RK, Kettenmann H (1998). Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141.PubMedGoogle Scholar
  100. Visentin S, Renzi M, Frank C, Greco A, Levi G (1999). Two different ionotropic receptors are activated by ATP in rat microglia. J Physiol (Lond) 519 Pt 3:723–736.Google Scholar
  101. Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H (1993). Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13:4403–4411.PubMedGoogle Scholar
  102. Wang X, Bae JH, Kim SU, McLarnon JG (1999). Platelet-activating factor induced Ca2+ signaling in human microglia. Brain Res 842:159–165.PubMedGoogle Scholar
  103. Wang X, Kim SU, Van Breemen C, McLarnon JG (2000). Activation of purinergic P2X receptors inhibits P2Y- mediated Ca2+ influx in human microglia Cell Calcium 27:205–212.PubMedGoogle Scholar
  104. Whittemore ER, Korotzer AR, Etebari A, Cotman CW (1993). Carbachol increases intracellular free calcium in cultured rat microglia. Brain Res 621:59–64.PubMedGoogle Scholar
  105. Yamashita K, Niwa M, Kataoka Y, Shigematsu K, Himeno A, Tsutsumi K, Nakano-Nakashima M, Sakurai-Yamashita Y, Shibata S, Taniyama K (1994). Microglia with an endothelin ETB receptor aggregate in rat hippocampus CA 1 subfields following transient forebrain ischemia. J Neurochem 63:1042–1051.PubMedGoogle Scholar
  106. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691.PubMedGoogle Scholar
  107. Zhang L, McLarnon JG, Goghari V, Lee YB, Kim SU, Krieger C (1998). Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neurosci Lett 255:33–36.PubMedGoogle Scholar
  108. Zimmerman GA, Elstad MR, Lorant DE, McLntyre TM, Prescott SM, Topham MK, Weyrich AS, Whatley RE (1996). Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv Exp Med Biol 416:297–304.PubMedGoogle Scholar
  109. Zlotnik A, Yoshie O (2000). Chemokines: a new classification system and their role in immunity. Immunity 12:121–127.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Thomas Möller

There are no affiliations available

Personalised recommendations