Skip to main content

Microglia and Aging in the Brain

  • Chapter

Abstract

Microglial activation during normal aging in the CNS is puzzling. In general, microglial activation is associated with neuron death, blood-brain barrier disruption, or invading lymphocytes, whereas, as we shall discuss, there is little evidence for such changes during normal aging. Microglial age changes may also interact with Alzheimer’s disease, which increases markedly during aging, as well as with inflammatory processes of aging in peripheral tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000). Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421.

    PubMed  CAS  Google Scholar 

  • Aldskogius H, Kozlova EN (1998). Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol 55:1–26.

    PubMed  CAS  Google Scholar 

  • Anderson KJ, Scheff SW, DeKosky ST (1986). Reactive synaptogenesis in hippocampal area CA 1 of aged and young adult rats. J Comp Neurol 252:374–384.

    PubMed  CAS  Google Scholar 

  • Andersson PB, Perry VH, Gordon S (1992). The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48:169–186.

    PubMed  CAS  Google Scholar 

  • Andrew W, Cardwell ES (1940). Neuronophagia in the human cerebral cortex in senility and pathological conditions. Arch Pathol 29:400–414.

    Google Scholar 

  • Barker CF, Billingham RE (1977). Immunologically priveleged sites. Adv Immunol 25:1–54

    PubMed  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (1999). Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9.

    PubMed  CAS  Google Scholar 

  • Bell MD, Lopez-Gonzalez R, Lawson L, Hughes D, Fraser I, Gordon S, Perry VH (1994). Upregulation of the macrophage scavenger receptor in response to different forms of injury in the CNS. J Neurocytol 23:605–613.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Schipper H, Naftolin F (1980). Ovary-dependent degeneration in the hypothalamic arcuate nucleus. Endocrinology 107:274–279.

    PubMed  CAS  Google Scholar 

  • Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, Parthasarathy S, Steiner SM, Mattson MP (1999). Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J Neuroimmunol 93:53–71.

    PubMed  CAS  Google Scholar 

  • Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pedersen BK (1999). A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54:M357–M64.

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM (1997). Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alphaphenylnitrone. Proc Natl Acad Sci USA 94:674–678.

    PubMed  CAS  Google Scholar 

  • Canady KS, Hyson RL, Rubel EW (1994). The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival. J Neurosci 14:5973–5985.

    PubMed  CAS  Google Scholar 

  • Chaconas G, Finch CE (1973). The effect of ageing on RNA-DNA ratios in brain regions of the C57BL-6J male mouse. J Neurochem 21:1469–1473.

    PubMed  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985). Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762.

    PubMed  CAS  Google Scholar 

  • Colman PD, Kaplan BB, Osterburg HH, Finch CE (1980). Brain poly(A)RNA during aging: stability of yield and sequence complexity in two rat strains. J Neurochem 34:335–345.

    PubMed  CAS  Google Scholar 

  • Cutler RG (1975). Transcription of unique and reiterated DNA sequences in mouse liver and brain as a function of age. Exp Gerontol 10:37–60.

    PubMed  CAS  Google Scholar 

  • Day JR, Min BH, Laping NJ, Martin GIII, Finch CE (1992). New mRNA probes for hippocampal responses to entorhinal cortex lesions in the adult male rat: a preliminary report. Exp Neurol 117:97–99.

    PubMed  CAS  Google Scholar 

  • DiPatre PL, Gelman BB (1997). Microglial cell activation in aging and Alzheimer disease: partial linkage with neurofibrillary tangle burden in the hippocampus. J Neuropathol Exp Neurol 56:143–149.

    PubMed  CAS  Google Scholar 

  • Dubey A, Forster MJ, Lal H, Sohal RS (1996). Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys 333:189–197.

    PubMed  CAS  Google Scholar 

  • Eglitis MA, Mezey E (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085.

    PubMed  CAS  Google Scholar 

  • Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ (1999). Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646.

    PubMed  CAS  Google Scholar 

  • Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE (1998). Amyloid-beta induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med 4:480–489.

    PubMed  CAS  Google Scholar 

  • Finch CE (1990). Longevity, senescence, and the genome. University of Chicago Press. Second printing, 1994.

    Google Scholar 

  • Finch CE (1973). Catecholamine metabolism in the brains of ageing male mice. Brain Res 52:261–276.

    PubMed  CAS  Google Scholar 

  • Finch CE, Felicio LS, Mobbs CV, Nelson JF (1984). Ovarian and steroidal influences on neuroendocrine aging processes in female rodents. Endocrine Rev 5:467–497.

    CAS  Google Scholar 

  • Finch CE, Foster JR, Mirsky AE (1969). Ageing and the regulation of cell activities during exposure to cold. J Gen Physiol 54:690–712.

    PubMed  CAS  Google Scholar 

  • Finch CE, Kirkwood TBL (2000). Chance, development, and aging. Oxford University Press.

    Google Scholar 

  • Finch CE, Longo V (2000). The Gero-inflammatory manifold. In: Neuroinflammatory mechanisms in Alzheimer’s disease: basic and clinical research, Chapter 1 (Rogers J, ed.). Basel: Birkhäuser-Verlag.

    Google Scholar 

  • Finch CE, Longo V, Miyao A, Morgan TE, Rozovsky I, Soong Y, Wei M, Xie Z, Zanjani H (2000). Amyloids, inflammatory mechanisms in Alzheimer disease, and aging. In: Molecular mechanisms in neurodegenerative diseases, Chapter 2 (Chesselet M-F, ed.), pp 87–110. Totowa NJ: Humana Press.

    Google Scholar 

  • Finch CE, Sapolsky RM (1999). The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 20:407–428.

    PubMed  CAS  Google Scholar 

  • Fischer EP, Lipson C (1988). Thinking about science: Max Delbrück and the origins of molecular biology. New York and London: W. W. Norton & Company.

    Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lah H, Sohal RS (1996). Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93:4765–4769.

    PubMed  CAS  Google Scholar 

  • Frame LT, Hart RW, Leakey JE (1998). Caloric restriction as a mechanism meditating resistance to environmental disease. Environ Health Perspect 106 Suppl 1:313–324.

    Google Scholar 

  • Gehrmann J, Mies G, Bonnekoh P, Banati R, Iijima T, Kreutzberg GW, Hossmann KA (1993). Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol 3:11–17.

    PubMed  CAS  Google Scholar 

  • Geinisman Y (1999). Age-related decline in memory function: is it associated with a loss of synapses? Neurobiol Aging 20:353–356.

    PubMed  CAS  Google Scholar 

  • Geinisman Y, Bondareff W, Dodge JT (1977). Partial deafferentation of neurons in the dentate gyms of the senescent rat. Brain Res 134:541–545.

    PubMed  CAS  Google Scholar 

  • Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE (1995). Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol 45:223–252.

    PubMed  CAS  Google Scholar 

  • Geula C, Wu C-K, Saroff D, Lorenzo A, Yuan M, Yanker BA (1998). Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4:827–831.

    PubMed  CAS  Google Scholar 

  • Globerson A, Effros RB (2000). Ageing of lymphocytes and lymphocytes in the aged. Immunol Today 21:515–521.

    PubMed  CAS  Google Scholar 

  • Goldsmith SK, Wals P, Rozovsky I, Morgan TE, Finch CE (1997). Kainic acid and decorticating lesions stimulate the synthesis of C 1 q protein in adult rat brain. J Neurochem 68:2046–2052.

    PubMed  CAS  Google Scholar 

  • Gordon MN, Schreier WA, Ou X, Holcomb LA, Morgan DG (1997). Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. J Comp Neurol 388:106–119.

    PubMed  CAS  Google Scholar 

  • Goss, JR, Finch CE, Morgan DG (1990). GFAP RNA prevalence is increased in aging and in wasting mice. Brief Communication. Exp Neurol 108:266–268.

    PubMed  CAS  Google Scholar 

  • Graeber MB, Bise K, Mehraein P (1993). Synaptic stripping in the human facial nucleus. Acta Neuropathol (Berl) 86:179–181.

    PubMed  CAS  Google Scholar 

  • Grewal RP, Yoshida T, Finch CE, Morgan TE (1997). Scavenger receptor mRNAs in rat brain microglia are induced by kainic acid lesioning and by cytokines. Neuroreport 8:1077–1081.

    PubMed  CAS  Google Scholar 

  • Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, Albert MS (1998). White matter changes with normal aging. Neurology 50:972–978.

    PubMed  CAS  Google Scholar 

  • Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R (1999). Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106:506–512.

    PubMed  CAS  Google Scholar 

  • Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL (2000). Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 859:157–166.

    PubMed  CAS  Google Scholar 

  • Hauss-Wegrzyniak B, Vraniak P, Wenk GL (1999). The effects of a novel NSAID on chronic neuroinflammation are age dependent. Neurobiol Aging 20:305–313.

    PubMed  CAS  Google Scholar 

  • Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000). The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 18:529–560.

    PubMed  CAS  Google Scholar 

  • Hoff SF, Scheff SW, Cotman CW (1982). Lesion-induced synaptogenesis in the dentate gyms of aged rats: II. Demonstration of an impaired degeneration clearing response. J Comp Neurol 1982 205:253–259.

    Google Scholar 

  • Hutchinson EW, Rose MR (1991). Quantitative genetics of postponed aging in Drosphila melanogaster. I. Analysis of outbred populations. Genetics 127:719–727.

    PubMed  CAS  Google Scholar 

  • Johnson SA, Lampert-Etchells M, Rozovsky I, Pasinetti G, Finch C (1992). Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental lesions. Neurobiol Aging 13:641–648.

    PubMed  CAS  Google Scholar 

  • Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991). Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear, and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 10:299–305.

    PubMed  CAS  Google Scholar 

  • Kato H, Walz W (2000). The initiation of the microglial response. Brain Pathol 10:137–143.

    PubMed  CAS  Google Scholar 

  • Kerr DS, Campbell LW, Applegate MD, Brodish A, Landfield PW (1991). Chronic stressinduced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J Neurosci 11:1316–1324.

    PubMed  CAS  Google Scholar 

  • Kohama SG, Anderson CP, Osterburg HH, May PC, Finch CE (1989). Oral administration of estradiol to young C57BL/6J mice induces age-like neuroendocrine dysfunctions in the regulation of estrous cycles. Biol Repro 41:227–232.

    CAS  Google Scholar 

  • Kosel S, Egensperger R, Bise K, Arbogast S, Mehraein P, Graeber MB (1997). Longlasting perivascular accumulation of major histocompatibility complex class II-positive lipophages in the spinal cord of stroke patients: possible relevance for the immune privilege of the brain. Acta Neuropathol 94:532–538.

    PubMed  CAS  Google Scholar 

  • Lamar CH, Hinsman EJ, Henrikson CK (1976). Alterations in the hippocampus of aged mice. Acta Neuropathol (Berl) 36:387–391.

    PubMed  CAS  Google Scholar 

  • Lampert-Etchells M, Pasinetti GM, Finch CE, Johnson SA (1993). Regional localization of cells containing C 1 qb and C4 mRNAs in the frontal cortex during Alzheimer disease. Neurodegeneration 2:111–121.

    Google Scholar 

  • Landfield PW, Braun LD, Pitler TA, Lindsey JD, Lynch G (1981). Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging 2:265–275.

    PubMed  CAS  Google Scholar 

  • Landfield PW, McEwan BS, Sapolsky RM, Meaney MJ (1996). Hippocampal cell death. Science 272:1249–1251.

    PubMed  CAS  Google Scholar 

  • Landfield PW, Rose G, Sandles L, Wohlstadter TC, Lynch G (1977). Patterns of astroglial hypertrophy and neuronal degeneration in the hippocampus of aged, memory-deficient rats. J Gerontol 32:3–12.

    PubMed  CAS  Google Scholar 

  • Landfield PW, Waymire JC, Lynch G (1978). Hippocampal aging and adrenocorticoids: quantitative correlations. Science 202:1098–1102.

    PubMed  CAS  Google Scholar 

  • Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS (1998). Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 25:1089–1097.

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1993). Microglial responses to physiological change: osmotic stress elevates DNA synthesis of neurohypophyseal microglia. Neuroscience 56:929–938.

    PubMed  CAS  Google Scholar 

  • Lee CK, Klopp RG, Weindruch R, Prolla TA (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393.

    PubMed  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000). Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297.

    PubMed  CAS  Google Scholar 

  • Lee EY, Lee SY, Lee TS, Chi JG, Choi W, Suh YH (2000). Ultrastructural changes in microvessel with age in the hippocampus of senescence-accelerated mouse (SAM)-P/10. Exp Aging Res 26:3–14.

    PubMed  CAS  Google Scholar 

  • Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP (1999). 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 57:48–61.

    PubMed  CAS  Google Scholar 

  • Li JJ, Surini M, Catsicas S, Kawashima E, Bouras C (1995). Age-dependent accumulation of advanced glycosylation end products in human neurons. Neurobiol Aging 16:69–76.

    PubMed  CAS  Google Scholar 

  • Li JJ, Voisin D, Quiquerez AL, Bouras C (1994). Differential expression of advanced glycosylation end-products in neurons of different species. Brain Res 641:285–288.

    PubMed  CAS  Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946.

    PubMed  CAS  Google Scholar 

  • Lindsey JF, Landfield PW, Lynch G (1979). Early onset and topographical distribution of hypertrophied astrocytes in hippocampus of aging rats: a quantitative study. J Gerontol 34:661–671.

    PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Nall Acad Sci USA 92:7540–7544.

    CAS  Google Scholar 

  • Liu Y, Jacobowitz DM, Barone F, McCarron R, Spatz M, Feuerstein G, Hallenbeck JM, Siren AL (1996). Quantitation of perivascular monocytes and macrophages around cerebral blood vessels of hypertensive and aged rats. J Cereb Blood Flow Metab 14:348–352.

    Google Scholar 

  • Long JM, Kalehua AN, Muth NJ, Calhoun ME, Jucker M, Hengemihle JM, Ingram DK, Mouton PR (1999). Stereological analysis of astrocyte and microglia in aging mouse hippocampus. Neurobiol Aging 19:497–503.

    Google Scholar 

  • Mackenzie IR, Munoz DG (1998). Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50:986–990.

    PubMed  CAS  Google Scholar 

  • Mander TH, Morris JF (1994). Perivascular microglia in the rat neural lobe engulf magnocellular secretory terminals during osmotic stimulation. Neurosci Lett 180:235–238.

    PubMed  CAS  Google Scholar 

  • Masoro EJ (1998). Influence of caloric intake on aging and on the response to stressors. J Toxicol Environ Health B Crit Rev 1:243–257.

    PubMed  CAS  Google Scholar 

  • Matyszak MK, Lawson LJ, Perry VH, Gordon S (1992). Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. J Neuroimmunol 40:173–181.

    PubMed  CAS  Google Scholar 

  • May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990). Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5:831–839.

    PubMed  CAS  Google Scholar 

  • May PC, Severson JA, Osterburg HH, Finch CE (1987). Compartmentalization of calmodulin and tubulin in the male C57BL/6J mouse brain: heterogeneity of age changes in calmodulin compartments. Neurobiol Aging 8:131–137.

    PubMed  CAS  Google Scholar 

  • May PC, Telford N, Salo D, Anderson C, Kohama SG, Finch CE, Walford RL, Weindruch R (1992). Failure of diet restriction to retard age-related neurochemical changes in mice. Neurobiol Aging 13:787–791.

    PubMed  CAS  Google Scholar 

  • McCarter RJ (1995). Role of caloric restriction in the prolongation of life. Clin Geriatr Med 11:553–565.

    PubMed  CAS  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171.

    PubMed  CAS  Google Scholar 

  • Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239:766–768.

    PubMed  CAS  Google Scholar 

  • Miller MM, Gould BE, Nelson JF (1989). Aging and long-term ovariectomy alter the cytoarchitecture of the hypothalamic-preoptic area of the C57BL/6J mouse. Neurobiol Aging 10:683–690.

    PubMed  CAS  Google Scholar 

  • Miyata T, Inagi R, Iida Y, Sato M, Yamada N, Oda O, Maeda K, Seo H (1994). Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest 93:521–528.

    PubMed  CAS  Google Scholar 

  • Mooradian AD (1994). Potential mechanisms of the age-related changes in the blood-brain barrier. Neurobiol Aging 15:751–755.

    PubMed  CAS  Google Scholar 

  • Morgan DG, Gordon MN (1996). Aging and molecular biology. In: The lifespan development of individuals. Behavioral, neurobiological, and psychosocial perspectives, a synthesis (Magnusson D, ed.), pp. 469–487. Cambridge University Press.

    Google Scholar 

  • Morgan TE, Nichols NR, Pasinetti GM, Finch CE (1993). TGF-β 1 mRNA increases in macrophage/microglia cells of the hippocampus in response to deafferentation and kainic acid-induced neurodegeneration. Exp Neurol 120:291–301.

    PubMed  CAS  Google Scholar 

  • Morgan TE, Rozovsky I, Sarkar DK, Young-Chan CS, Nichols NR, Finch CE (2000). Transforming growth factor-b1 (TGF-bl) induces TGF-bl and TGF-b1 receptor mRNAs and reduces complement C1qB mRNA in rat brain in microglia. Neuroscience 101:313–321.

    PubMed  CAS  Google Scholar 

  • Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein A-S, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE (1999). The mosaic of brain glial hyperactivity during normal aging and its attenuation by food restriction. Neuroscience 89:687–699.

    PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA, Berg L (1996). Cerebral amyloid deposition and diffuse plaques in “normal” aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46:707–719.

    PubMed  CAS  Google Scholar 

  • Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993). GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14:421–429.

    PubMed  CAS  Google Scholar 

  • Nichols NR, Masters JN, Finch CE (1994). Cloning of steroid-responsive mRNAs by differential hybridization. In: Neurobiology of steroids (De Kloet R, ed.). Meth Neurosci 22:296–313.

    Google Scholar 

  • Ogg S, Paradis S, Gottleb S, Patterson GL, Lee L, Tissenbaum H, Ruvkun G (1997). The Fork head transcription factor DAF-16 tranduces insulin-like metabolic and longevity symbols in C. elegans. Nature 389:994–999.

    PubMed  CAS  Google Scholar 

  • Ogura K, Ogawa M, Yoshida M (1994). Effects of ageing on microglia in the normal rat brain: immunohistochemical observations. Neuroreport 5:1224–1226.

    PubMed  CAS  Google Scholar 

  • Ohe Y, Ishikawa K, Itoh Z, Tatemoto K (1996). Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J Neurochem 67:964–971.

    PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130.

    PubMed  CAS  Google Scholar 

  • Pasinetti GM, Hassler M, Stone D, CE Finch (1999). Glial gene expression during aging in rat striatum and in long-term responses to 6-OHDA lesions. Synapse 31:278–284.

    PubMed  CAS  Google Scholar 

  • Pasinetti GM, Johnson SA, Rozovsky I, Lampert-Etchells M, Morgan DG, Gordon MN, Morgan TE, Willoughby DA, Finch CE (1992). Complement C 1 qB and C4 mRNA responses to lesioning in rat brain. Exp Neurol 118:117–125.

    PubMed  CAS  Google Scholar 

  • Pasinetti GM, Nichols NR, Tocco G, Morgan T, Laping N, Finch CE (1993). Transforming growth factor-β31 (TGF-β 1) and fibronectin mRNA in rat brain: responses to injury and cell-type localization. Neuroscience 54:893–907

    PubMed  CAS  Google Scholar 

  • Perlmutter LS, Scott SA, Barron E, Chui HC (1992). Mhc class II-positive microglia in human brain: association with Alzheimer lesions. J Neurosci Res 33:549–558.

    PubMed  CAS  Google Scholar 

  • Perry VH, Matyszak MK, Fearn S (1993). Altered antigen expression of microglia in the aged rodent CNS. Glia 7:60–67.

    PubMed  CAS  Google Scholar 

  • Poirier J, Hess M, May PC, Finch CE (1991). Cloning of hippocampal poly(A)RNA sequences that increase after entorhinal cortex lesion in adult rat. Mol Brain Res 9:191–195.

    PubMed  CAS  Google Scholar 

  • Pow DV, Perry VH, Morris JF, Gordon S (1989). Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons. Neuroscience 33:567–578.

    PubMed  CAS  Google Scholar 

  • Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzber GW (1999). Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105.

    PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Kloss CUA, Werner A, Neumann H, Kreutzver GW (1998). Immune surveillance in the injured nervous system: T- lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18:5804–5816.

    PubMed  CAS  Google Scholar 

  • Rasmussen T, Schliemann T, Sorensen JC, Zimmer J, West MJ (1996). Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17:143–147.

    PubMed  CAS  Google Scholar 

  • Reagan LP, McEwen BS (1997). Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J Chem Neuroanat 13:149–167.

    PubMed  CAS  Google Scholar 

  • Ross R (1999). Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126.

    PubMed  CAS  Google Scholar 

  • Roth GS, Ingram DK, Joseph JA (1984). Delayed loss of striatal dopamine receptors during aging of dietarily restricted rats. Brain Res 300:27–32.

    PubMed  CAS  Google Scholar 

  • Rozovsky I, Finch CE, Morgan TE (1998). Age-related activation of microglia and astrocytes: in vitro studies show persistence of phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19:97–103.

    PubMed  CAS  Google Scholar 

  • Rozovsky I, Morgan TE, Willoughby DA, Dugich-Djordevich MN, Pasinetti GM, Johnson SA, Finch CE (1994). Selective expression of clusterin (SGP-2) and complement C 1 q and C4 during responses to neurotoxins in vivo and in vitro. Neuroscience 62:741–758.

    PubMed  CAS  Google Scholar 

  • Sell DR, Kleinman NR, Monnier VM (2000). Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. FASEB J 14:145–156.

    PubMed  CAS  Google Scholar 

  • Schipper HM (1996). Astrocytes, brain aging, and neurodegeneration. Neurobiol Aging 17:467–480.

    PubMed  CAS  Google Scholar 

  • Schipper H, Brawer JR, Nelson JF, Felicio LS, Finch CE (1981). Role of the gonads in the histologic aging of the hypothalamic arcuate nucleus. Biol Reprod 25:413–419.

    PubMed  CAS  Google Scholar 

  • Scott SA, Mandybur TI (1996). Astrocytic and microglial alterations in the aged mouse brain. In: Pathobiology of the aging mouse, Vol. 2 (Mohr U, Dungworth DL, Capen CC, Carlton WW, Sundberg JP, Ward JM, eds.), pp 39–52. Washington, DC: ISLI Press.

    Google Scholar 

  • Severson JA, Finch CE (1980). Reduced dopaminergic binding during aging in the rodent striatum. Brain Res 192:147–162.

    PubMed  CAS  Google Scholar 

  • Shaw JA, Perry VH, Mellanby J (1994). MHc class II expression by microglia in tetanus toxin-induced experimental epilepsy in the rat. Neuropathol Appl Neurobiol 20:392–398.

    PubMed  CAS  Google Scholar 

  • Sheffield LG, Berman NE (1998). Microglial expression of Mhc class II increases in normal aging of nonhuman primates. Neurobiol Aging 19:47–55.

    PubMed  CAS  Google Scholar 

  • Sierra F, Coeytaux S, Juillerat M, Ruffieux C, Gauldie J, Guigoz Y (1992). Serum T- kininogen levels increase two to four months before death. J Biol Chem 267:10665–10669.

    PubMed  CAS  Google Scholar 

  • Sobin SS, Bernick S, Ballard KW (1992). Histochemical characterization of the aging microvasculature in the human and other mammalian and non-mammalian vertebrates by the periodic acid-Schiff reaction. Mech Ageing Dev 63:183–192.

    PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994). Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76:215–224.

    PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996). Oxidative stress, caloric restriction, and aging. Science 273:59–63.

    PubMed  CAS  Google Scholar 

  • Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992). Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323.

    PubMed  CAS  Google Scholar 

  • Streit WJ, Sparks DL (1997). Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med 75:130–138.

    PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999). Reactive microgliosis. Prog Neurobiol 57:563–581

    PubMed  CAS  Google Scholar 

  • Sturrock RR (1988). An ultrastructural study of intraventricular macrophages in the brains of aged mice. Anat Anz 165:283–290.

    PubMed  CAS  Google Scholar 

  • Stuesse SL, Cruce WL, Lovell JA, McBurney DL, Crisp T (2000). Microglial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci Lett 287:121–124.

    PubMed  CAS  Google Scholar 

  • Thomas WE (1999). Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57.

    PubMed  CAS  Google Scholar 

  • Thomas WE (1992). Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 17:61–74.

    PubMed  CAS  Google Scholar 

  • Topple A, Fifkova E, Baumgardner D, Cullen-Dockstader K (1991). Effect of age on blood vessels and neurovascular appositions in the CA1 region of the rat hippocampus. Neurobiol Aging 12:211–217.

    PubMed  CAS  Google Scholar 

  • Vaughan DW, Peters A (1974). Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 3:405–429.

    PubMed  CAS  Google Scholar 

  • Vijayan VK, Cotman CW (1983). Lysosomal enzyme changes in young and aged control and entorhinal-lesioned rats. Neurobiol Aging 4:13–23.

    PubMed  CAS  Google Scholar 

  • Volk MJ, Pugh TD, Kim M, Frith CH, Daynes RA, Ershler WB, Weindruch R (1994). Dietary restriction from middle age attenuates age-associated lymphoma development and interleukin 6 dysregulation in C57BL/6 mice. Cancer Res 54:3054–3061.

    PubMed  CAS  Google Scholar 

  • Weindruch RH, Kristie JA, Cheney KE, Walford RL (1979). Influence of controlled dietary restriction on immunologic function and aging. Fed Proc 38:2007–2016.

    PubMed  CAS  Google Scholar 

  • Weindruch R, Walford RL (1988). The retardation of aging and disease by diet restriction. Springfield, IL: CC Thomas.

    Google Scholar 

  • Wekerle H, Linnington C, Lassmann H, Meyermann R (1986). Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277.

    Google Scholar 

  • West MJ (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22(2):51–61.

    PubMed  CAS  Google Scholar 

  • Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I (2000). Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 97:8681–868.

    PubMed  CAS  Google Scholar 

  • Woods AG, Guthrie KM, Kurlawalla MA, Gall CM (1998). Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats. Neuroscience 83:663–668.

    PubMed  CAS  Google Scholar 

  • Wustrow TP, Denny TN, Fernandes G, Good RA (1982). Changes in macrophages and their functions with aging in C57BL/6J, AKR/J, and SJL/J mice. Cell Immunol 69:227–234.

    PubMed  CAS  Google Scholar 

  • Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897.

    PubMed  CAS  Google Scholar 

  • Yasojima K, Schwab C, McGeer EG, McGeer PL (1998). Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Cire Res 83:860–869.

    CAS  Google Scholar 

  • Ye SM, Johnson RW (1999). Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol 93:139–148.

    PubMed  CAS  Google Scholar 

  • Yoshida T, Goldsmith S, Morgan TE, Stone D, Finch CE (1996). Transcription supports age-related increases of GFAP gene expression in the male rat brain. Neurosci Lett 215:107–110.

    PubMed  CAS  Google Scholar 

  • Xie Z, Morgan TE, Finch CE (2000). Neurotoxicity of activated microglia originated from young and old rats. Soc Neurosci Abs 26:726.4.

    Google Scholar 

  • Zhu Y, Roth-Eichhorn S, Braun N, Culmsee C, Rami A, Krieglstein J (2000). The expression of transforming growth factor-beta1 (TGF-beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Res 866:286–298.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finch, C.E., Morgan, T.E., Rozovsky, I., Xie, Z., Weindruch, R., Prolla, T. (2002). Microglia and Aging in the Brain. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics