Skip to main content

Influences of Activated Microglia/Brain Macrophages on Spinal Cord Injury and Regeneration

  • Chapter
Microglia in the Regenerating and Degenerating Central Nervous System

Abstract

Damage to the central nervous system (CNS) systematically elicits the activation of both astrocytes and microglia, often termed reactive gliosis. This article is focused on the principal features that characterize cellular events associated with the activation of microglia after spinal cord injury (SCI) that govern the regenerative success or failure of injured neurons. In addition to discussing the role of microglia as immunocompetent cells of the CNS, it addresses the influences of activated microglia/brain macrophages on astrogliosis. The controversial issue of whether reactive microgliosis is a beneficial or harmful process with respect to neuroprotection is addressed, and a resolution of this dilemma is offered by suggesting different interpretations of the term “activated microglia” depending on its usage during experimentation in vivo or in vitro. Importantly, it provides a critical discussion regarding the distinction and relation between microglia-derived brain macrophages and infiltrating peripheral macrophages, and their conflicting roles in creating a pro-regenerative environment. To this end, evidence is reviewed that suggests that microglia-derived brain macrophages are capable of overriding many of the inhibitory obstacles to regeneration following SCI through their production of growth factors and cytokines, as well as their deposition or modulation of the extacellular matrix in the injured environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson PB, Perry VH, Gordon S (1991). The kinetics and morphological characteristics of the macrophage-microglial response to kainic acid-induced neuronal degeneration. Neuroscience 42:201–214.

    PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993). Cytotoxicity of microglia. Glia 7:111–118.

    PubMed  CAS  Google Scholar 

  • Barron KD (1995). The microglial cell. A historical review. J Neurol Sci 134 Suppl:57–68.

    PubMed  Google Scholar 

  • Barron KD, Marciano FF, Amundson R, Mankes R (1990). Perineuronal glial responses after axotomy of central and peripheral axons. A comparison. Brain Res 523:219–229.

    PubMed  CAS  Google Scholar 

  • Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716.

    PubMed  CAS  Google Scholar 

  • Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995). The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15:437–446.

    PubMed  CAS  Google Scholar 

  • Blakemore WF (1983). Remyelination of demyelinated spinal cord axons by Schwann cells. In: Spinal Cord Reconstruction (Kao CC, Bunge RP, Reier PJ, eds.), pp 281–291. New York: Raven Press.

    Google Scholar 

  • Blakemore WF, Crang AJ, Curtis R (1986). The interaction of Schwann cells with CNS axons in regions containing normal astrocytes. Acta Neuropathol (Berlin) 71:295–300.

    PubMed  CAS  Google Scholar 

  • Blaugrund E, Duvdevani R, Lavie V, Solomon A, Schwartz M (1992). Disappearance of astrocytes and invasion of macrophages following crush injury of adult rodent optic nerves: implications for regeneration. Exp Neurol 118:105–115.

    PubMed  CAS  Google Scholar 

  • Chamak B, Dobbertin A, Mallat M (1995). Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187.

    PubMed  CAS  Google Scholar 

  • Chamak B, Morandi V, Mallat M (1994). Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res 38:221–233.

    PubMed  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987). Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288.

    PubMed  CAS  Google Scholar 

  • David S, Bouchard C, Tsatas O, Giftochristos N (1990). Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 5:463–469.

    PubMed  CAS  Google Scholar 

  • De Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD (1992). Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6:301–309.

    PubMed  Google Scholar 

  • Dyer JK, Bourque JA, Steeves JD (1998). Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat. Exp Neurol 154:12–22.

    PubMed  CAS  Google Scholar 

  • Elkabes S, DiCicco-Bloom EM, Black IB (1996). Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508–2521.

    PubMed  CAS  Google Scholar 

  • Fagan AM, Gage FH (1990). Cholinergic sprouting in the hippocampus: a proposed role for IL-1. Exp Neurol 110:105–120.

    PubMed  CAS  Google Scholar 

  • Feringa ER, Kowalski TF, Vahlsing HL (1980). Basal lamina formation at the site of spinal cord transection. Ann Neurol 8:148–154.

    PubMed  CAS  Google Scholar 

  • Finch CE, Laping NJ, Morgan TE, Nichols NR, Pasinetti GM (1993). TGF-beta 1 is an organizer of responses to neurodegeneration. J Cell Biochem 53:314–322.

    PubMed  CAS  Google Scholar 

  • Fitch MT, Silver J (1997). Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148:587–603.

    PubMed  CAS  Google Scholar 

  • Frei E, Klusman I, Schnell L, Schwab ME (2000). Reactions of oligodendrocytes to spinal cord injury: cell survival and myelin repair. Exp Neurol 163:373–380.

    PubMed  CAS  Google Scholar 

  • Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A (1987). Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 17:1271–1278.

    PubMed  CAS  Google Scholar 

  • Gebicke-Haerter PJ, Van Calker D, Norenberg W, Illes P (1996). Molecular mechanisms of microglial activation. A. Implications for regeneration and neurodegenerative diseases. Neurochem Int 29:1–12.

    PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ, Shih LC, Lachman LB (1986). Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604.

    PubMed  CAS  Google Scholar 

  • Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989). The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 9:4416–4429.

    PubMed  CAS  Google Scholar 

  • Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993a). Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36:681–693.

    PubMed  CAS  Google Scholar 

  • Giulian D, Li J, Bartel S, Broker J, Li X, Kirkpatrick JB (1995). Cell surface morphology identifies microglia as a distinct class of mononuclear phagocyte. J Neurosci 15:7712–7726.

    PubMed  CAS  Google Scholar 

  • Giulian D, Li J, Li X, George J, Rutecki PA (1994). The impact of microglia-derived cytokines upon gliosis in the CNS. Dey Neurosci 16:128–136.

    CAS  Google Scholar 

  • Giulian D, Robertson C (1990). Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27:33–42.

    PubMed  CAS  Google Scholar 

  • Giulian D, Vaca K, Corpuz M (1993b). Brain glia release factors with opposing actions upon neuronal survival. J Neurosci 13:29–37.

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (1990). Microglia: immune network in the CNS. Brain Pathol 1:2–5.

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ, Kreutzberg GW (1988). Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res 21:18–24.

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ, Kreutzberg GW (1989). Formation of microglia-derived brain macrophages is blocked by adriamycin. Acta Neuropathol 78:348–358.

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ, Kreutzberg GW (1990). The third glial cell type, the microglia: cellular markers of activation in situ. Acta Histochem Suppl 38:157–160.

    PubMed  CAS  Google Scholar 

  • Guth L, Barrett CP, Donati EJ, Anderson FD, Smith MV, Lifson M (1985). Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion. Exp Neurol 88:1–12.

    PubMed  CAS  Google Scholar 

  • Hagg T, Varon S, Louis JC (1993). Ciliary neurotrophic factor (CNTF) promotes lowaffinity nerve growth factor receptor and CD4 expression by rat CNS microglia. J Neuroimmunol 48:177–187.

    PubMed  CAS  Google Scholar 

  • Harvey AR, Fan Y, Connor AM, Grounds MD, Beilharz MW (1993). The migration and intermixing of donor and host glia on nitrocellulose polymers implanted into cortical lesion cavities in adult mice and rats. Int J Dey Neurosci 11:569–581.

    CAS  Google Scholar 

  • Hickey WF (1991). Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol 1:97–105.

    PubMed  CAS  Google Scholar 

  • Hickey WF, Kimura H (1988). Perivascular microglial cells of the CNS are bone marrowderived and present antigen in vivo. Science 239:290–292.

    PubMed  CAS  Google Scholar 

  • Hoffman JR, Dixit VM, O’Shea KS (1994). Expression of thrombospondin in the adult nervous system. J Comp Neurol 340:126–139.

    PubMed  CAS  Google Scholar 

  • Honda S, Nakajima K, Nakamura Y, Imai Y, Kohsaka S (1999). Rat primary cultured microglia express glial cell line-derived neurotrophic factor receptors. Neurosci Lett 275:203–206.

    PubMed  CAS  Google Scholar 

  • Junier MP, Suzuki F, Onteniente B, Peschanski M (1994). Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Brain Res Mol Brain Res 24:247–260.

    PubMed  CAS  Google Scholar 

  • Keirstead HS, Hughes HC, Blakemore WF (1998). A quantifiable model of axonal regeneration in the demyelinated adult rat spinal cord. Exp Neurol 151:303–313.

    PubMed  CAS  Google Scholar 

  • Keirstead HS, Morgan SV, Wilby MJ, Fawcett JW (1999). Enhanced axonal regeneration following combined demyelination plus Schwann cell transplantation therapy in the injured adult spinal cord. Exp Neurol 159:225–236.

    PubMed  CAS  Google Scholar 

  • Kiefer R, Gold R, Gehrmann J, Lindholm D, Wekerle H, Kreutzberg GW (1993). Transforming growth factor beta expression in reactive spinal cord microglia and meningeal inflammatory cells during experimental allergic neuritis. J Neurosci Res 36:391–398.

    PubMed  CAS  Google Scholar 

  • Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung HP (1995). Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dey Neurosci 13:331–339.

    CAS  Google Scholar 

  • Klagsbrun M, D’ Amore PA (1991). Regulators of angiogenesis. Annu Rev Physiol 53:217–239.

    PubMed  CAS  Google Scholar 

  • Klusman I, Schwab ME (1997). Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 762:173–184.

    PubMed  CAS  Google Scholar 

  • Kohsaka S, Nakajima K, Hamanoue M, Koizumi S, Inoue K (1994). Microglia-derived plasminogen has neurotrophic effects on the CNS neurons in vitro. Neuropathol Appl Neurobiol 20:190.

    PubMed  CAS  Google Scholar 

  • Koshinaga M, Whittemore SR (1995). The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. J Neurotrauma 12:209–222.

    PubMed  CAS  Google Scholar 

  • Krall WJ, Challita PM, Perlmutter LS, Skelton DC, Kohn DB (1994). Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 83:2737–2748.

    PubMed  CAS  Google Scholar 

  • Krenz NR, Weaver LC (2000). Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J Neurochem 74:730–739.

    PubMed  CAS  Google Scholar 

  • Lawler J (1986). The structural and functional properties of thrombospondin. Blood 67:1197–1209.

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170.

    PubMed  CAS  Google Scholar 

  • Lazar DA, Ellegala DB, Avellino AM, Dailey AT, Andrus K, Kliot M (1999). Modulation of macrophage and microglial responses to axonal injury in the peripheral and central nervous systems. Neurosurgery 45:593–600.

    PubMed  CAS  Google Scholar 

  • Li Y, Raisman G (1995). Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 134:102–111.

    PubMed  CAS  Google Scholar 

  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H (1992). Transforming growth factorbeta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117:395–400.

    PubMed  CAS  Google Scholar 

  • Liuzzi FJ, Lasek RJ (1987). Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237:642–645.

    PubMed  CAS  Google Scholar 

  • Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A (1994). Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci 6:355–363.

    PubMed  CAS  Google Scholar 

  • Mallat M, Chamak B (1994). Brain macrophages: neurotoxic or neurotrophic effector cells? J Leukoc Biol 56:416–422.

    PubMed  CAS  Google Scholar 

  • Mallat M, Houlgatte R, Brachet P, Prochiantz A (1989). Lipopolysaccharide-stimulated rat brain macrophages release NGF in vitro. Dey Biol 133:309–311.

    CAS  Google Scholar 

  • Martinou JC, Le Van Thai A, Valette A, Weber MJ (1990). Transforming growth factor beta 1 is a potent survival factor for rat embryo motoneurons in culture. Brain Res Dey Brain Res 52:175–181.

    CAS  Google Scholar 

  • Masuda-Nakagawa LM, Muller KJ, Nicholls JG (1993). Axonal sprouting and laminin appearance after destruction of glial sheaths. Proc Natl Acad Sci USA 90:4966–4970.

    PubMed  CAS  Google Scholar 

  • Masuda-Nakagawa LM, Walz A, Brodbeck D, Neely MD, Grumbacher-Reinert S (1994). Substrate-dependent interactions of leech microglial cells and neurons in culture. J Neurobiol 25:83–91.

    PubMed  CAS  Google Scholar 

  • Masuda-Nakagawa LM, Wiedemann C (1992). The role of matrix molecules in regeneration of leech CNS. J Neurobiol 23:551–567.

    PubMed  CAS  Google Scholar 

  • McKeon RJ, Hoke A, Silver J (1995). Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43.

    PubMed  CAS  Google Scholar 

  • McTigue DM, Popovich PG, Morgan TE, Stokes BT (2000). Localization of transforming growth factor-betal and receptor mRNA after experimental spinal cord injury. Exp Neurol 163:220–230.

    PubMed  CAS  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993). Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141.

    PubMed  CAS  Google Scholar 

  • Merrill JE, Zimmerman RP (1991). Natural and induced cytotoxicity of oligodendrocytes by microglia is inhibitable by TGF beta. Glia 4:327–331.

    PubMed  CAS  Google Scholar 

  • Miwa T, Furukawa S, Nakajima K, Furukawa Y, Kohsaka S (1997). Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J Neurosci Res 50:1023–1029.

    PubMed  CAS  Google Scholar 

  • Möller JC, Klein MA, Haas S, Jones LL, Kreutzberg GW, Raivich G (1996). Regulation of thrombospondin in the regenerating mouse facial motor nucleus. Glia 17:121–132.

    PubMed  Google Scholar 

  • Moon LD, Brecknell JE, Franklin RJ, Dunnett SB, Fawcett JW (2000). Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol 161:49–66.

    PubMed  CAS  Google Scholar 

  • Morshead CM, van der Kooy D (1990). Separate blood and brain origins of proliferating cells during gliosis in adult brains. Brain Res 535:237–244.

    PubMed  CAS  Google Scholar 

  • Nagata K, Nakajima K, Takemoto N, Saito H, Kohsaka S (1993a). Microglia-derived plasminogen enhances neurite outgrowth from explant cultures of rat brain. Int J Dev Neurosci 11:227–237.

    PubMed  CAS  Google Scholar 

  • Nagata K, Takei N, Nakajima K, Saito H, Kohsaka S (1993b). Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. J Neurosci Res 34:357–363.

    PubMed  CAS  Google Scholar 

  • Nakajima K, Nagata K, Hamanoue M, Takemoto N, Kohsaka S (1993). Microglia-derived elastase produces a low-molecular-weight plasminogen that enhances neurite outgrowth in rat neocortical explant cultures. J Neurochem 61:2155–2163.

    PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M (1999). Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 468:207–224.

    PubMed  CAS  Google Scholar 

  • Norenberg MD (1994). Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220.

    PubMed  CAS  Google Scholar 

  • O’Shea KS, Liu LH, Dixit VM (1991). Thrombospondin and a 140 kd fragment promote adhesion and neurite outgrowth from embryonic central and peripheral neurons and from PC 12 cells. Neuron 7:231–237.

    PubMed  Google Scholar 

  • Osterhout DJ, Frazier WA, Higgins D (1992). Thrombospondin promotes process outgrowth in neurons from the peripheral and central nervous systems. Dev Biol 150:256–265.

    PubMed  CAS  Google Scholar 

  • Paino CL, Fernandez-Valle C, Bates ML, Bunge MB (1994). Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol 23:433–452.

    PubMed  CAS  Google Scholar 

  • Pennell NA, Streit WJ (1997). Colonization of neural allografts by host microglial cells: relationship to graft neovascularization. Cell Transplant 6:221–230.

    PubMed  CAS  Google Scholar 

  • Perry VH, Brown MC, Gordon S (1987). The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165:1218–1223.

    PubMed  CAS  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991). Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162.

    PubMed  CAS  Google Scholar 

  • Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365.

    PubMed  CAS  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997). Cellular inflammatory response after spinal cord injury in Sprague- Dawley and Lewis rats. J Comp Neurol 377:443–464.

    PubMed  CAS  Google Scholar 

  • Prewitt CM, Niesman IR, Kane CJ, Houle JD (1997). Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148:433–443.

    PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997). Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48.

    PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Streit WJ (1998). Role of microglia in postinjury repair and regeneration of the CNS. MRDD Res Rev 4:187–192.

    Google Scholar 

  • Reier PJ, Stensaas LJ, Guth L (1983). The astrocytic scar as an impediment to regeneration in the central nervous system. In: Spinal Cord Reconstruction (Kao CC, Bunge RP, Reier PJ, eds.), pp 163–195. New York: Raven Press.

    Google Scholar 

  • Remick DG, Scales WE, May MA, Spengler M, Nguyen D, Kunkel SL (1988). In situ hybridization analysis of macrophage-derived tumor necrosis factor and interleukin-1 mRNA. Lab Invest 59:809–816.

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Davis JB, Stroobant P, Land H (1989). Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 109:3419–3424.

    PubMed  CAS  Google Scholar 

  • Rinner WA, Bauer J, Schmidts M, Lassmann H, Hickey WF (1995). Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia 14:257–266.

    PubMed  CAS  Google Scholar 

  • Río Hortega Pd (1932). Microglia. In: Cytology and cellular pathology of the nervous system (Penfield W, ed.), pp 481–534. New York: P.B. Hoeber.

    Google Scholar 

  • Riva-Depaty I, Fardeau C, Mariani J, Bouchaud C, Delhaye-Bouchaud N (1994). Contribution of peripheral macrophages and microglia to the cellular reaction after mechanical or neurotoxin-induced lesions of the rat brain. Exp Neurol 128:77–87.

    PubMed  CAS  Google Scholar 

  • Sawada M, Kondo N, Suzumura A, Marunouchi T (1989). Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397.

    PubMed  CAS  Google Scholar 

  • Schelper RL, Adrian EK, Jr. (1986). Monocytes become macrophages; they do not become microglia: a light and electron microscopic autoradiographic study using 125-iododeoxyuridine. J Neuropathol Exp Neurol 45:1–19.

    PubMed  CAS  Google Scholar 

  • Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE (1994). Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem 269:26775–26782.

    PubMed  CAS  Google Scholar 

  • Schwab ME, Kapfhammer JP, Bandtlow CE (1993). Inhibitors of neunte growth. Annu Rev Neurosci 16:565–595.

    PubMed  CAS  Google Scholar 

  • Semple-Rowland SL, Mahatme A, Popovich PG, Green DA, Hassler G, Jr., Stokes BT, Streit WJ (1995). Analysis of TGF-beta 1 gene expression in contused rat spinal cord using quantitative RT- PCR. J Neurotrauma 12:1003–1014.

    PubMed  CAS  Google Scholar 

  • Shimojo M, Nakajima K, Takei N, Hamanoue M, Kohsaka S (1991). Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci Lett 123:229–231.

    PubMed  CAS  Google Scholar 

  • Shuman SL, Bresnahan JC, Beattie MS (1997). Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50:798–808.

    PubMed  CAS  Google Scholar 

  • Sievers J, Struckhoff G, Puchner M (1993). Interleukin-1 beta does not induce reactive astrogliosis, neovascularization or scar formation in the immature rat brain. Int J Dev Neurosci 11:281–293.

    PubMed  CAS  Google Scholar 

  • Smith GM, Hale JH (1997). Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 17:9624–9633.

    PubMed  CAS  Google Scholar 

  • Stichel CC, Muller HW (1994). Extensive and long-lasting changes of glial cells following transection of the postcommissural fornix in the adult rat. Glia 10:89–100.

    PubMed  CAS  Google Scholar 

  • Streit WJ (1993). Microglial-neuronal interactions. J Chem Neuroanat 6:261–266.

    PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1988a). Functional plasticity of microglia: a review. Glia 1:301–307.

    PubMed  CAS  Google Scholar 

  • Streit WJ, Kincaid-Colton CA (1995). The brain’s immune system. Sci Am 273:38–43.

    Google Scholar 

  • Streit WJ, Kreutzberg GW (1988b). Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263.

    PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999). Reactive microgliosis. Prog Neurobiol 57:563–581.

    PubMed  CAS  Google Scholar 

  • Thanos S, Mey J, Wild M (1993). Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 13:455–466.

    PubMed  CAS  Google Scholar 

  • Theele DP, Streit WJ (1993). A chronicle of microglial ontogeny. Glia 7:5–8.

    PubMed  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995a). A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272.

    PubMed  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Bunge MB (1995b). Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 351:145–160.

    PubMed  CAS  Google Scholar 

  • Zajicek JP, Wing M, Scolding NJ, Compston DA (1992). Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain 115:1611–1631.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rabchevsky, A.G. (2002). Influences of Activated Microglia/Brain Macrophages on Spinal Cord Injury and Regeneration. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics