Physiology and Pathophysiology of Microglial Cell Function

  • Wolfgang J. Streit


The primary objective of this first chapter is to provide a brief overview and synthesis of the subsequent chapters in this book and to elaborate on some favorite subjects, such as the role of microglia in the normal brain and their role in Alzheimer’s disease. Other pathological conditions where microglia are thought to play important roles, such as autoimmune CNS inflammatory disease, experimental allergic encephalomyelitis and multiple sclerosis, or infectious diseases such as HIV, will not be covered specifically in this book, but there are excellent reviews available on these topics (Gonzalez-Scarano and Baltuch (1999); Benveniste et al. (1997)).


Microglial Cell Facial Nucleus Synapse Loss Enhance Neurite Outgrowth Reactive Microgliosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WST, Hampel H, Hull M, Landreth G, Lue LF, Mrak R, Mackenzie M, O’ B anion K, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray, A (2000) Inflammation and Alzheimer’s Disease. Neurobiol Aging 21:383–421.PubMedCrossRefGoogle Scholar
  2. Barger SW, Harmon AD (1997) Microglia activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388:878–881.CrossRefGoogle Scholar
  3. Benveniste EN (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75:165–173.PubMedCrossRefGoogle Scholar
  4. Bertolotto A, Caterson B, Canavese G, Migheli A, Schiffer D (1993) Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain. J Histochem Cytochem 41:481–487.PubMedCrossRefGoogle Scholar
  5. Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch 85:145–157.PubMedCrossRefGoogle Scholar
  6. Bruce-Keller AJ (1999) Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res 58:191–201.PubMedCrossRefGoogle Scholar
  7. Carpenter AF, Carpenter PW, Markesbery WR (1993) Morphometric analysis of microglia in Alzheimer’s disease. J Neuropathol Exp Neurol 52:601–608.PubMedCrossRefGoogle Scholar
  8. Chamak B, Morandi V, Mallat M (1994) Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res 38:221–233.PubMedCrossRefGoogle Scholar
  9. Fassbender K, Schneider S, Bertsch T, Schlueter D, Fatar M, Ragoschke A, Kuhl S, Kischka U, Hennerici M (2000) Temporal profile of release of interleukin-1beta in neurotrauma. Neurosci Lett 284:135–138.PubMedCrossRefGoogle Scholar
  10. Fiske BK, Brunjes PC (2000) Microglial activation in the developing rat olfactory bulb. Neuroscience 96:807–815.PubMedCrossRefGoogle Scholar
  11. Gehrmann J, Schoen SW, Kreutzberg GW (1991) Lesion of the rat entorhinal cortex leads to a rapid microglial activation in the dentate gyrus. Acta Neuropathol 82:442–455.PubMedCrossRefGoogle Scholar
  12. Giulian D, Havercamp LJ, Yu JH, Karshin W, Tom D, Li J, Kirkpatrick J, Kuo LM, Roher AE (1996) Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci 16:6021–6037.PubMedGoogle Scholar
  13. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240.PubMedCrossRefGoogle Scholar
  14. Gottschall PE, Yu X, Bing B (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42:335–342.PubMedCrossRefGoogle Scholar
  15. Graeber MB, Streit WJ, Kreutzberg GW (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res 21:18–24.PubMedCrossRefGoogle Scholar
  16. Griffin WS, Stanley LC, Ling C, White L, Mac-Leod V, Perrot LJ, White CL, Araoz C (1989) Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer’s disease. Proc Natl Acad Sci USA 86:7611–7615.PubMedCrossRefGoogle Scholar
  17. Hickey WF, Vass K, Lassmann H (1992) Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51:246–256.PubMedCrossRefGoogle Scholar
  18. Hurley SD, Streit WJ (1996) Microglia and the mononuclear phagocyte system. In: Topical Issues of Microglial Research, edited by E.A. Ling, C.K. Tan, and C.B.C. Tan, Singapore Neuroscience Association, pp 1–19.Google Scholar
  19. Hurley SD, Walter SA, Semple-Rowland SL, Streit WJ (1999) Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia of the developing rat central nervous system. Glia 25:304–309.PubMedCrossRefGoogle Scholar
  20. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HTJ, Nixon RA, Mercken M, Bergeron C, Fraser PE, St. George-Hysolop P, Westaway D (2000) Ab peptide immunization reduces behavioral impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982.PubMedCrossRefGoogle Scholar
  21. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318.PubMedCrossRefGoogle Scholar
  22. Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7:19–24.PubMedCrossRefGoogle Scholar
  23. Ling EA, Wong WC. (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18.PubMedCrossRefGoogle Scholar
  24. Maehlen J, Olsson T, Zachau A, Klareskog L, Kristensson K (1989) Local enhancement of major histocompatibility complex (MHC) class I and II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23:125–132.PubMedCrossRefGoogle Scholar
  25. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43:192–197.PubMedCrossRefGoogle Scholar
  26. McDonald DR, Brunden KR, Landreth F (1997) Amyloid fibrils activate tyrosine kinasedependent signaling and superoxide production in microglia. J Neurosci 17:2284–2294.PubMedGoogle Scholar
  27. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650.PubMedCrossRefGoogle Scholar
  28. Möller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem75:1539–1547.PubMedCrossRefGoogle Scholar
  29. Moore S, Thanos S (1996) The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 48:41–460.CrossRefGoogle Scholar
  30. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) Ab peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985.PubMedCrossRefGoogle Scholar
  31. Nakajima K, Tsuzaki N, Shimojo M, Hamanoue M, Kohsaka S (1992) Microglia isolated from rat brain secrete a urokinase-type plasminogen activator. Brain Res 577:285–292.PubMedCrossRefGoogle Scholar
  32. Nakajima K, Nagata K, Hamanoue M, Takemoto N, Kohsaka S (1993) Microglia-derived elastase produces a low-molecular-weight plasminogen that enhances neurite outgrowth in rat neocortical explant cultures. J Neurochem 61:2155–2163.PubMedCrossRefGoogle Scholar
  33. Nakajima K, Reddington M, Kohsaka S, Kreutzberg GW (1996) Induction of urokinasetype plasminogen activator in rat facial nucleus by axotomy of the facial nerve. J Neurochem 66:2500–2505.PubMedCrossRefGoogle Scholar
  34. Palacios, G (1990) A double immunocytochemical and histochemical technique for demonstration of cholinergic neurons and microglial cells in basal forebrain and neostriatum of the rat. Neurosci Lett 115:13–18.PubMedCrossRefGoogle Scholar
  35. Rabchevsky AG, Streit WJ (1997) Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48.PubMedCrossRefGoogle Scholar
  36. Rieske E, Graeber MB, Tetzlaff W, Czlonkowska A, Streit WJ, Kreutzberg GW (1989) Microglia and microglia-derived brain macrophages in culture: generation from axotomized rat facial nuclei, identification and characterization in vitro. Brain Res 492:1–14.PubMedCrossRefGoogle Scholar
  37. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23:618–625.PubMedCrossRefGoogle Scholar
  38. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177.PubMedCrossRefGoogle Scholar
  39. Schoen SW, Kreutzberg GW (1994) Synaptic 59-nucleotidase activity reflects lesioninduced sprouting within the adult rat dentate gyms. Exp Neurol 127:106–118.PubMedCrossRefGoogle Scholar
  40. Schoen SW, Kreutzberg GW (1995) Evidence that 59-nucleotidase is associated with malleable synapses—an enzyme histochemical investigation of the olfactory bulb of adult rats. Neuroscience 65:37–50.PubMedCrossRefGoogle Scholar
  41. Sorokin SP, Hoyt RF Jr, Blunt DG, McNelly, NA (1992) Macrophage development: II. Early ontogeny of macrophage populations in brain, liver, and lungs of rat embryos as revealed by a lectin marker. Anat Rec 232:527–550.PubMedCrossRefGoogle Scholar
  42. Sparks DL, Scheff SW, Hunsaker III JC, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94.PubMedCrossRefGoogle Scholar
  43. Streit WJ (1995) Microglial cells. In: Neuroglia, edited by H. Kettenmann and B.R. Ransom. Oxford University Press.Google Scholar
  44. Streit WJ, Sparks DL (1997) Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med 75:130–138.PubMedCrossRefGoogle Scholar
  45. Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT (1998) Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 152:74–87.PubMedCrossRefGoogle Scholar
  46. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581.PubMedCrossRefGoogle Scholar
  47. Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL (2000) Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuronglia signaling during regeneration. J Neurosci Res 61:10–20.PubMedCrossRefGoogle Scholar
  48. Streit WJ (2001) Microglia and macrophages in the developing CNS. Neurotoxicology, in press.Google Scholar
  49. Takahashi K, Yamamura F, Naito M. (1989) Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J Leukocyte Biol 45:87–96.PubMedGoogle Scholar
  50. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580.PubMedCrossRefGoogle Scholar
  51. Theele DP, Streit WJ. (1993) A chronicle of microglial ontogeny. Glia 7:5–8.PubMedCrossRefGoogle Scholar
  52. Ulvestad E, Williams K, Matre R, Nyland H, Olivier A, Antel J (1994) Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. (primary), and/or J. Exp. Neurol. 53:27–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Wolfgang J. Streit

There are no affiliations available

Personalised recommendations