Advertisement

Lagrangian Heuristics for the Linear Ordering Problem

  • Alexandre Belloni
  • Abilio Lucena
Part of the Applied Optimization book series (APOP, volume 86)

Abstract

Two heuristics for the Linear Ordering Problem are investigated in this paper. These heuristics are embedded within a Lagrangian Relaxation framework and are started with a construction phase. In this process, some Lagrangian (dual) information is used as an input to guide the construction of initial Linear Orderings. Solutions thus obtained are then submitted to local improvement in an overall procedure that is repeated throughout Subgradient Optimization. Since a very large number of inequalities must be dualized in this application, Relax and Cut is used instead of a straightforward implementation of the Subgradient Method. Heuristics are tested for instances from the literature and also for some new hard to solve exactly ones. From the results obtained, one of the proposed heuristics has shown to be competitive with the best in the literature. In particular, it generates optimal solutions for all 79 instances taken from the literature. As a by-product, it also proves optimality for 72 of them.

Keywords

Linear ordering problem Lagrangian relaxation Relax and cut. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J.E. Beasley. Lagrangean relaxation. In C. Reeves, editor, Modern Heuristics. Blackwell Scientific Press, 1993.Google Scholar
  2. G. Bolotashvili, M. Kovalev, and G. Girlich. New facets of the linear ordering polytope. SIAM J. Discrete Math., 3: 326–336, 1999.MathSciNetCrossRefGoogle Scholar
  3. J. F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, and C. Sagastizdbal. Optimisation numérique: aspects théoriques et pratiques. Springer Verlag, 1997.Google Scholar
  4. F. Calheiros, A. Lucena, and C. de Sousa. Optimal rectangular partitions. Networks, 41: 51–67, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  5. V. Campos, M. Laguna, and R. Marti. Scatter search for the linear ordering problem. In D. Come, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 331–339. Mc-Graw Hill, 1999.Google Scholar
  6. S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear ordering problem. Computational Optimization and Applications, 6: 191–205, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  7. L. Escudero, M. Guignard, and K. Malik. A lagrangian relax and cut approach for the sequential ordering with precedence constraints. Annals of Operations Research, 50: 219–237, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  8. M. L. Fisher. The lagrangian relaxation method for solving integer programming problems. Mangement Science, 27: 1–18, 1981.zbMATHCrossRefGoogle Scholar
  9. F. Glover. A template for scatter search and path relinking. In J.-K. Hao, E. Lut-ton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution, Lecture Notes in Computer Science 1363, pages 13–54. Springer, 1998.Google Scholar
  10. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, 1997.Google Scholar
  11. R. E. Gomory. An algorithm for the mixed integer problem. Technical report, The Rand Corporation, 1960.Google Scholar
  12. C. G. Gonzalez and D. Pérez-Brito. A variable neighborhood search for solving the linear ordering problem. In Proceedings of MIC’2001–4th Metahruristics International Conference, pages 181–185, 2001.Google Scholar
  13. M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering problem. Operations Research, 32: 1195–1220, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  14. M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Mathematical Programming, 33: 43–60, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  15. M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimization. Mathematical Programming, 6: 62–88, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  16. M. Hunting, U. Faigle, and W. Kern. A lagrangian relaxation approach to the edge-weighted clique problem. European Journal on Operational Research, 131: 119–131, 2001. ILOG, Inc. CPLEX, version 7.1, 2001.Google Scholar
  17. M. Laguna, R. Marti, and V. Campos. Intensification and diversification with elite tabu search solutions for the linear ordering problem. Computers and Operations Research, 26: 1217–1230, 1999.zbMATHCrossRefGoogle Scholar
  18. J. Leung and J. Lee. More facets from fences for linear ordering and acyclic subgraphs polytopes. Discrete Applied Mathematics, 50: 185–200, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  19. S. Lin and B. W. Kerningham. An effective heuristic for the traveling salesman problem. Operations Research, 21: 498–516, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  20. A. Lucena. Steiner problem in graphs: Lagrangean relaxation and cutting-planes. COAL Bulletin, 21: 2–8, 1992.Google Scholar
  21. A. Lucena. Tight bounds for the steiner problem in graphs. In Proceedings of NETFLOW93, pages 147–154, 1993.Google Scholar
  22. C. Martinhon, A. Lucena, and N. Maculan. Stronger k-tree relaxations for the vehicle routing problem. Technical report, PESC-COPPE, Universidade Federal do Rio de Janeiro, 2001. accepted for publication in European Journal on Operational Research.Google Scholar
  23. A. McLennan. Binary stochastic choice. In J. S. Chipman, D. McFadden, and M. K. Richter, editors, Preferences, Uncertainty and Optimality. Westview Press, 1990.Google Scholar
  24. J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. Technical report, Rensseler Institute, 1997.Google Scholar
  25. N. Mladenovié and P. Hansen. Variable neighborhood search. Computers and Operations Research, 24: 1097–1100, 1997.MathSciNetCrossRefGoogle Scholar
  26. G. Reinelt. The Linear Ordering Problem: Algorithms and Applications. Helder-mann Verlag, Berlin, 1985.zbMATHGoogle Scholar
  27. G. Reinelt. A note on small linear ordering polytope. Discrete Computational Geometry, 10: 67–78, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  28. G. Reinelt. Lolib. Internet repository, 1997. http://www.iwr.uni- heildelberg.de/iwricomopt/soft/LOLIB/LOLIB.html.Google Scholar
  29. H. Wessels. Triagulation und blocktriangulation von input-output-tabellen. Technical report, Deutches Institut für Wirtschaftsforschung, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Alexandre Belloni
    • 1
  • Abilio Lucena
    • 2
  1. 1.Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Departamento de AdministraçãoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations