Advertisement

Variable Neighborhood Search for the K-Cardinality Tree

  • Nenad Mladenović
  • Dragan Urošević
Part of the Applied Optimization book series (APOP, volume 86)

Abstract

The minimum k-cardinality tree problem on graph G consists in finding a subtree of G with exactly k edges whose sum of weights is minimum. In this paper we propose variable neighborhood search heuristic for solving it. We also analyze different shaking strategies and their influence on the final solution. New methods are compared favorably with other heuristics from the literature.

Keywords

Graphs k-cardinality tree Variable neighborhood search Optimization. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Brimberg, P. Hansen, N. Mladenovic, and É. Taillard. Improvements and comparison of heuristics for solving multisource weber problem. Oper. Res., 48 (3): 444–460, 2000.CrossRefGoogle Scholar
  2. B. Das and M. C. Loui. Reconstructing a minimum spanning tree after deletion of any node. Algorithmica, 31 (4): 530–547, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  3. M. Ehrgott, J. Freitag, H. Hamacher, and F. Maffioli. Heuristics for the.kcardinality tree and subgraph problems. Asia-Pacific J. of Op. Res., 14: 87–114, 1997.MathSciNetzbMATHGoogle Scholar
  4. M. Fischetti, H. Hamacher, K. Jornsten, and F. Maffioli. Weighted k-cardinalityGoogle Scholar
  5. trees: Complexity and ‘polyhedral structure. Networks, 24: 11–21, 1994.Google Scholar
  6. L.R. Foulds and H.W. Hamacher. A new integer programming approach to (restricted) facilities layout problems allowing flexible facility shapes. Technical Report 1992–3, University of Waikato, 1992.Google Scholar
  7. F. Glover. Tabu search–Part 1. ORSA, J. Comput., 1: 190–206, 1989.MathSciNetzbMATHGoogle Scholar
  8. H. Hamacher, K. Jornsten, and F. Maffioli. Weighted k-cardinality trees. Technical Report 91.023, Politecnico di Milano, 1991.Google Scholar
  9. P. Hansen and N. Mladenovic. An introduction to variable neighborhood search. In S. Voss et al., editor, Meta-heuristics, Advances and Trends in Local Search Paradigms for Optimization, pages 433–458, Dordrecht, 1999. Kluwer Academic Publishers.CrossRefGoogle Scholar
  10. P. Hansen and N. Mladenovic. J-means: A new local search heuristic for min- imum sum-of-squares clustering. Pattern Recognition, 34: 405–413, 2001a.zbMATHCrossRefGoogle Scholar
  11. P. Hansen and N. Mladenovic. Variable neighborhood search: Principles and applications. European J. Oper. Res., 130 (3): 449–467, 2001b.MathSciNetzbMATHCrossRefGoogle Scholar
  12. P. Hansen and N. Mladenovik. Developments of variable neighborhood search. In C. Ribeiro and P. Hansen, editors, Essays and Surveys in Meta-heuristics, pages 415–440, Dordrecht, 2002. Kluwer Academic Publishers.CrossRefGoogle Scholar
  13. K. Jörnsten and A. Lekketangen. Tabu search for weighted k-cardinality trees. Asia-Pacific J. of Op. Res., 14 (2): 9–26, 1997.zbMATHGoogle Scholar
  14. J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc., 7: 48–50, 1956.MathSciNetzbMATHCrossRefGoogle Scholar
  15. N. Mladenovic, J.P. Moreno, and J. Moreno-Vega. A chain-interchange heuristic method. Yugoslav J. Oper. Res., 6 (1): 45–54, 1996.MathSciNetGoogle Scholar
  16. C. Ribeiro and C. Souza. Variable neighborhood descent for the degree—constrained minimum spanning tree problem. Discrete Applied Mathematics, 118: 43–54, 2002.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Nenad Mladenović
    • 1
    • 2
  • Dragan Urošević
    • 1
  1. 1.Mathematical Institute of Serbian Academy of Sciences and ArtsBelgradeSerbia and Montenegro
  2. 2.GERAD, H.E.CMontrealCanada

Personalised recommendations