Advertisement

On the Behavior of ACO Algorithms: Studies on Simple Problems

  • Daniel Merkle
  • Martin Middendorf
Part of the Applied Optimization book series (APOP, volume 86)

Abstract

The behavior of Ant Colony Optimization (ACO) algorithms is studied on simple problems which allow us to identify characteristic properties of these algorithms. In particular, ACO algorithms using different pheromone evaluation methods are investigated. A new method for the use of pheromone information by artificial ants is proposed. Experimentally it is shown that an ACO algorithm using the new method performs better than ACO algorithms using other known methods for certain types of problems.

Keywords

Ant colony optimization Pheromone information Permutation problems. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Bautista and J. Pereira. Ant algorithms for assembly line balancing. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant algorithms, number 2463 in Lecture Notes in Computer Science (LNCS), pages 65–75, Berlin, 2002. Springer.Google Scholar
  2. M. den Besten, T. Stützle, and M. Dorigo. Scheduling single machines by ants. Technical Report IRIDIA/99–16, IRIDIA, Université Libre de Bruxelles, Belgien, 1999.Google Scholar
  3. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5 (2): 137–172, 1999.CrossRefGoogle Scholar
  4. M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New ideas in optimization, pages 11–32. McGraw-Hill, London, 1999.Google Scholar
  5. M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics–Part B, 26: 29–41, 1996.CrossRefGoogle Scholar
  6. D. Merkle and M. Middendorf. An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In S. Cagnoni, R. Poli, Y. Li, G. Smith, D. Corne, M.J. Oates, E. Hart, P.L. Lanzi, E.J.W. Boers, B. Paechter, and T.C. Fogarty, editors, Real-World Applications of Evolutionary Computing, Proceedings of the EvoWorkshops 2000,number 1803 in Lecture Notes in Computer Science (LNCS), pages 287–296, Berlin, 2000. Springer.Google Scholar
  7. D. Merkle and M. Middendorf. A new approach to solve permutation scheduling problems with ant colony optimization. In E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E.Hart, G.R. Raidi, and H. Tijink, editors, Applications of Evolutionary Computing, Proceedings of the EvoWorkshops 2001, number 2037 in Lecture Notes in Computer Science (LNCS), pages 484–493. Springer Verlag, 2001.Google Scholar
  8. D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6 (4): 333–346, 2002.CrossRefGoogle Scholar
  9. R. Michels and M. Middendorf. An ant system for the shortest common supersequence problem. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 51–61. McGraw-Hill, London, 1999.Google Scholar
  10. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.Google Scholar
  11. C. Rajendran and H. Ziegler. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 2003. To appear.Google Scholar
  12. T. Stützle and M. Dorigo. An experimental study of the simple ant colony optimization algorithm. In N. Mastorakis, editor, Proceedings of the 2001 WSES International Conference on Evolutionary Computation (EC’01), pages 253–258. WSES-Press International, 2001.Google Scholar
  13. T. Teich, M. Fischer, A. Vogel, and J. Fischer. A new ant colony algorithm for the job shop scheduling problem. In L. Spector, D. Whitley, D. Goldberg, E. Cantu-Paz, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), page 803, San Francisco, CA, USA, 2001. Morgan Kaufmann.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Daniel Merkle
    • 1
  • Martin Middendorf
    • 1
  1. 1.Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations