Skip to main content

An Analysis of Solution Properties of the Graph Coloring Problem

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 86))

Abstract

This paper concerns the analysis of solution properties of the Graph Coloring Problem. For this purpose, we introduce a property based on the notion of representative sets which are sets of vertices that are always colored the same in a set of solutions. Experimental results on well-studied DIMACS graphs show that many of them contain such sets and give interesting information about the diversity of the solutions. We also show how such an analysis may be used to improve a tabu search algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A.L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286: 509–512, 1999.

    Article  MathSciNet  Google Scholar 

  • D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22 (4): 251–256, 1979.

    Article  MATH  Google Scholar 

  • P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are. In J. Mylopoulos and R. Reiter, editors, Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, volume 1, pages 331–337. Morgan Kaufmann Publishers, 1991.

    Google Scholar 

  • J.C. Culberson and I.P. Gent. Well out of reach: Why hard problems are hard. Technical Report APES-13–1999, APES Research Group, 1999. http://www.dcs.st-and.ac.ukl —apes/reports/apes-13–1999.ps.gz.

  • L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

    Google Scholar 

  • R. Dorne and J.K. Hao. A new genetic local search algorithm for graph coloring. In A.E. Eiben, T. Back, M. Schoenauer, and H.P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 745–754. Springer-Verlag, 1998a.

    Google Scholar 

  • R. Dorne and J.K. Hao. Tabu search for graph coloring, T-colorings and set T-colorings. In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 77–92. Kluwer Academic Publishers, 1998b.

    Google Scholar 

  • N. Dubois and D. De Werra. EPCOT: an efficient procedure for coloring optimally with tabu search. Computers and Mathematics with Applications, 25 (10/11): 35–45, 1993.

    Article  MATH  Google Scholar 

  • C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of Operations Research, 63: 437–461, 1996a.

    Article  MATH  Google Scholar 

  • C. Fleurent and J.A. Ferland. Object-oriented implementation of heuristic search methods for graph coloring, maximum clique, and satisfiability. In D.S. Johnson and M.A. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 619–652. American Mathematical Society, 1996b.

    Google Scholar 

  • N. Funabiki and T. Higashino. A minimal-state processing search algorithm for graph coloring problems. IEICE Transactions on Fundamentals, E83-A(7): 1420–1430, 2000.

    Google Scholar 

  • P. Galinier. Etude des métaheuristiques pour la résolution du problème de satisfaction de contraintes et de la coloration de graphes. PhD thesis, University of Montpellier II, France, 1999.

    Google Scholar 

  • P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3 (4): 379–397, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Gamst. Some lower bounds for a class of frequency assignment problems. IEEE Transactions on Vehicular Technology, 35 (1): 8–14, 1986.

    Article  Google Scholar 

  • M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completness. W.H. Freeman and Company, 1979.

    Google Scholar 

  • F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

    Google Scholar 

  • C.P. Gomes, B. Selman, and H.A. Kautz. Boosting combinatorial search through randomization. In C. Rich, J. Mostow, B.G. Buchanan, and R. Uthurusamy, editors, Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Conference on Innovative Applications of Artificial Intelligence, pages 431–437. AAAI Press/MIT Press, 1998.

    Google Scholar 

  • M.M. Halldarsson. A still better performance guarantee for approximate graph coloring. Information Processing Letters, 45 (1): 19–23, 1993.

    Article  MathSciNet  Google Scholar 

  • J.P. Hamiez and J.K. Hao. Scatter search for graph coloring. In P. Collet, E. Lut-ton, M. Schoenauer, C. Fonlupt, and J.K. Hao, editors, Artificial Evolution, volume 2310 of Lecture Notes in Computer Science, pages 168–179. Springer-Verlag, 2002.

    Google Scholar 

  • A. Hertz and D. De Werra. Using tabu search techniques for graph coloring. Computing, 39: 345–351, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Hertz, B. Jaumard, and M. Poggi De Aragâo. Local optima topology for the k-coloring problem. Discrete Applied Mathematics, 49 (1–3): 257–280, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Hogg. Refining the phase transition in combinatorial search. Artificial Intelligence, 81 (1–2): 127–154, 1996.

    Article  MathSciNet  Google Scholar 

  • A. Jagota. An adaptive, multiple restarts neural network algorithm for graph coloring. European Journal of Operational Research, 93 (2): 257–270, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  • D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; Part II, Graph coloring and number partitioning. Operations Research, 39 (3): 378–406, 1991.

    Article  MATH  Google Scholar 

  • D.S. Johnson and M.A. Trick, editors. Cliques Coloring and Satisfiabilityvolume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society,1996.

    Google Scholar 

  • P.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards, 84: 489–506, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41 (5): 960–981, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computational complexity from characteristic ‘phase transitions’. Nature, 400 (8): 133–137, 1999.

    MathSciNet  Google Scholar 

  • C.A. Morgenstern. Distributed coloration neighborhood search. In D.S. Johnson and M.A. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 335–357. American Mathematical Society, 1996.

    Google Scholar 

  • E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

    Google Scholar 

  • T. Walsh. Search in a small world. In T. Dean, editor, Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, volume 2, pages 1172–1177. Morgan Kaufmann Publishers, 1999.

    Google Scholar 

  • T. Walsh. Search on high degree graphs. In B. Nebel, editor, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, volume 1, pages 266–271. Morgan Kaufmann Publishers, 2001.

    Google Scholar 

  • D.J. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393: 440–442, 1998.

    Article  Google Scholar 

  • D. Welsh. Codes and Cryptography. Oxford University Press, 1988.

    Google Scholar 

  • M. Yokoo. Why adding more constraints makes a problem easier for hill-climbing algorithms: analyzing landscapes of CSPs. In G. Smolka, editor, Principles and Practice of Constraint Programming - CP97, volume 1330 of Lecture Notes in Computer Science, pages 356–370. Springer-Verlag, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamiez, JP., Hao, JK. (2003). An Analysis of Solution Properties of the Graph Coloring Problem. In: Metaheuristics: Computer Decision-Making. Applied Optimization, vol 86. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4137-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4137-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5403-9

  • Online ISBN: 978-1-4757-4137-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics