Advertisement

Experimental Pool Design: Input, Output and Combination Strategies for Scatter Search

  • Peter Greistorfer
Part of the Applied Optimization book series (APOP, volume 86)

Abstract

We investigate several versions of a tabu scatter search heuristic to solve permutation type optimization problems. The focus lies on the design of the three main components which are comprised in every pool-oriented method. These components are the input and output procedures, which are responsible for pool maintenance and determine the transfer of elite solutions, and a solution combination method which must effectively combine a set of elite solutions. We propose several methods for each of these three components and evaluate their combinations as heuristic design variants on a sample set of capacitated Chinese postman instances. Descriptive results are discussed in detail and supported by the testing of a statistical hypothesis.

Keywords

Pool method Scatter search Metaheuristics design Statistical evaluation. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. P. Bastos and C. C. Ribeiro. Reactive tabu search with path-relinking for the Steiner problem in graphs. In C. C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 39–58. Kluwer Academic Publishers, Boston, 2002.CrossRefGoogle Scholar
  2. R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA J. on Computing, 6 (2): 126–140, 1994.zbMATHCrossRefGoogle Scholar
  3. V. Campos, F. Glover, M. Laguna, and R. Marti. An experimental evaluation of a scatter search for the linear ordering problem. J. of Global Optimization, 21: 397–414, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  4. V. Campos, M. Laguna, and R. Marti. Scatter search for the linear ordering problem. In D. Come, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 331–339. McGraw-Hill, London, 1999.Google Scholar
  5. V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares. A scatter search based approach for the quadratic assignment problem. In T. Bäck, Z. Michalewicz, and X. Yao, editors, Proceedings of IEEE-ICEC-EPS’97, IEEE International Conference on Evolutionary Computation and Evolutionary Programming Conference, pages 165–170, Indianapolis, USA, April 1997.Google Scholar
  6. F. Dammeyer and S. Voß. Dynamic tabu list management using the reverse elimination method. Annals of Ops Res, 41: 31–46, 1993.zbMATHGoogle Scholar
  7. T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally difficult set covering problem. Ops Res. Letters, 8: 67–71, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  8. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. J. of Global Optimization, 6: 109–133, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  9. F Glover. Tabu search — part II. ORSA J. on Computing, 2: 4–32, 1990.zbMATHCrossRefGoogle Scholar
  10. F Glover. A template for scatter search and path relinking. In J.-K. Hao, E. Lut-ton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution. Lecture Notes in Computer Science, 1363, pages 3–51. Springer, Heidelberg,1998.Google Scholar
  11. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.zbMATHCrossRefGoogle Scholar
  12. P. Greistorfer. Hybrid genetic tabu search for a cyclic scheduling problem. In S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 213–229. Kluwer Academic Publishers, Boston, 1998.Google Scholar
  13. P. Greistorfer. A tabu scatter search metaheuristic for the arc routing problem. Computers and Industrial Engineering, 44 (2): 249–266, 2003.CrossRefGoogle Scholar
  14. P. Greistorfer and S. Voß. Controlled pool maintenance in combinatorial optimization. In Conference on Adaptive Memory and Evolution: Tabu Search and Scatter Search, 2001.Google Scholar
  15. A. Hertz, G. Laporte, and M. Mittaz. A tabu search heuristic for the capacitated arc routing problem. Ops Res., 48 (1, Jan-Feb): 129–135, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  16. M. Laguna. Optimization of complex systems with OptQuest. http://www.decisioneering.com/articles/articleindex.html 1997.
  17. C. R. Reeves. Genetic algorithms. In C. R. Reeves, editor, Modern heuristic techniques for combinatorial problems, pages 151–196. Blackwell Scientific Publications, 1993.Google Scholar
  18. Y. Rochat and É. Taillard. Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1 (1): 147–167, 1995.zbMATHCrossRefGoogle Scholar
  19. SPSS. Version 10.0, SPSS GmbH Software. München, 1999.Google Scholar
  20. S. Voß. Solving quadratic assignment problems using the reverse elimination method. In S. G. Nash and A. Sofer, editors, The Impact of Emerging Technologies on Computer Science and Operations Research, pages 281–296. Kluwer, Dordrecht, 1995.CrossRefGoogle Scholar
  21. D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. J. of Artificial Intelligence Research, 6: 1–34, 1997.MathSciNetzbMATHGoogle Scholar
  22. D. L. Woodruff and E. Zemel. Hashing vectors for tabu search. Ann. Ops Res., 41: 123–137, 1993.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Peter Greistorfer
    • 1
  1. 1.Institut für Industrie und FertigungswirtschaftKarl-Franzens-UniversitätGrazAustria

Personalised recommendations