Inorganic Nutrients: Nitrogen, Phosphorus, and Other Nutrients

  • Robert G. Wetzel
  • Gene E. Likens

Abstract

Compounds of nitrogen, and especially those of phosphorus, are major cellular components of organisms. Since the availability of these ele­ments may be less than the biological demand, environmental sources can regulate or limit the productivity of organisms in freshwater ecosys­tems. Other elements such as iron and sulfur are essential cellular constituents but are required in relatively low concentrations in relation to availability in fresh waters. The major basic cations, calcium, magnesium, sodium, and potas­sium, usually are required in very low quantities, but their concentrations in fresh water can influence the osmoregulation of organisms.

Keywords

Total Phosphorus Specific Conductance Inorganic Nutrient Glass Fiber Filter American Public Health Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association et al. 1989. Standard Methods for the Examination of Water and Wastewater. 17th Ed. American Public Health Association, Washington, D.C. 1550 pp.Google Scholar
  2. Armstrong, F.A.J. and S. Tibbitts. 1968. Photochemical combustion of organic matter in seawater for nitrogen, phosphorus and carbon determination. J. Mar. Biol. Assoc. U.K. 48:143–152.Google Scholar
  3. Beaty, R.D. 1978. Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry. Perkin-Elmer Corp., Norwalk, CT.Google Scholar
  4. Burton, J.D., T.M. Leatherland, and P.S. Liss. 1970. The reactivity of dissolved silicon in some natural waters. Limnol. Oceanogr. 15: 463–476.Google Scholar
  5. Butler, J.N. 1964. Ionic Equilibrium. A Mathematical Approach. Addison-Wesley, Reading, Mass. 547 pp.Google Scholar
  6. Carlson, R.M. and D.R. Keeney. 1971. Specific ion electrodes: Techniques and uses in soil, plant, and water analysis. pp. 39–65. In: L.M. Walsh, Editor. Instrumental Methods for Analysis of Soils and Plant Tissue. Soil Sci. Soc. America, Madison, Wis.Google Scholar
  7. Durst, R.A. (ed). 1969. Ion selective electrodes. Spec. Publ. National Bureau Standards, Washington, D.C. 314. 452 pp.Google Scholar
  8. Gallon, J.R., W.G.W. Kurz, and T.A. LaRue. 1975. The physiology of nitrogen fixation by a Gloeocapsa sp. pp. 159–173. 1n: W.D.P. Stewart, Editor. Nitrogen Fixation by Free-living Micro-organisms. Academic, New York.Google Scholar
  9. Galloway, J.N., J. Cosby, and G.E. Likens. 1979. Acid precipitation: The measurement of pH and acidity in acid precipitation. Limnol. Oceanogr. 24:1161-1165.Google Scholar
  10. Garrets, R.M. and C.L. Christ. 1965. Solution, Minerals, and Equilibria. Harper and Row, New York. 450 pp.Google Scholar
  11. Gjerde, D.T. and J.S. Fritz. 1987. Ion Chromatography. 2nd Ed. Dr. Alfred Huthig Verlag, Berlin.Google Scholar
  12. Golterman, H.L. and R.S. Clymo (ed). 1969. Methods for Chemical Analyses of Fresh Waters. IBP Handbook No. 8. Blackwell, Oxford. 172 pp.Google Scholar
  13. Hardy, R.W.F., R.C. Burns, and R.D. Holsten. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5: 47–81.Google Scholar
  14. Hardy, R.W.F., R.D. Holsten, E.K. Jackson, and R.C. Burns. 1968. The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol. 43:1185–1207.Google Scholar
  15. Harwood, J.E. and A.L. Kühn. 1970. A colorimetric method for ammonia in natural waters. Water Res. 4: 805–811.CrossRefGoogle Scholar
  16. Lean, D.R.S. 1973: Phosphorus dynamics in lake water. Science 179: 678–680.PubMedCrossRefGoogle Scholar
  17. Likens, G.E. and P.L. Johnson. 1968. A limnological reconnaissance in interior Alaska. U.S. Army Cold Regions Research and Engineering Laboratory, Research Rept. 239. Hanover,N.H. 41 pp.Google Scholar
  18. Lodge, J.P., Jr. (ed). 1989. Methods of Air Sampling and Analysis. 3rd Ed. Lewis Publ. Chelsea, Mich.Google Scholar
  19. Mackereth, F.J.H. 1963. Some Methods of Water Analysis for Limnologists. Sci. Publ. Freshw. Biol. Assoc. U.K. 21. 71 pp.Google Scholar
  20. Manny, B.A., M.C. Miller, and R.G. Wetzel. 1971. Ultraviolet combustion of dissolved organic nitrogen compounds in lake waters. Limnol. Oceanogr. 16: 71–85.Google Scholar
  21. Marshall, C.E. 1964. The Physical Chemistry and Minerology of Soils. Vol. I. Soil Materials. Wiley, New York. 388 pp.Google Scholar
  22. Menzel, D.W. and N. Corwin. 1965. The measurement of total phosphorus in seawater based upon the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280–282.Google Scholar
  23. Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.Google Scholar
  24. Rainwater, F.H. and L.L. Thatcher. 1960. Methods for Collection and Analysis of Water Samples. U.S. Geol. Surv. Water-Supply Pap. 1454. 301 pp.Google Scholar
  25. Rodhe, W. 1949. The ionic composition of lake waters. Verh. Int. Ver. Limnol. 10:377–386. Rodhe, W. 1951. Minor constituents in lake waters. Verh. Int. Ver. Limnol. 11:317–323. Shugar, G.J., R.A. Shugar, L. Bauman, and R.S. Bauman. 1981. The Chemical Technician’sGoogle Scholar
  26. Ready Reference Handbook. McGraw-Hill, New York.Google Scholar
  27. Small, H., T.S. Stevens, and W.C. Bauman. 1975. Novel ion exchange chromatographic method using conductimetric detection. Anal. Chem. 47:1801–1804.Google Scholar
  28. Snyder, L.R. and J.J. Kirkland. 1986. An Introduction to Modern Liquid Chromatorgraphy. 3rd Ed. Wiley, New York.Google Scholar
  29. Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.Google Scholar
  30. Stadelmann, P. 1971. Stickstoffkreislauf and Primärproduktion im mesotrophen Vierwaldstättersee (Horwer Bucht) und im eutrophen Rotsee, mit besonderer Berüchsichtigung des Nitrats als limitierenden Faktors. Schweiz. Z. Hydrol. 33:1–65.Google Scholar
  31. Stainton, M.P., M.J. Capel, and F.A.J. Armstrong. 1977. The Chemical Analysis of Fresh Waters. 2nd Ed. Misc. Spec. Publ. Dept. Environment Canada 25. 166 pp.Google Scholar
  32. Stewart, W.D.P., G.P. Fitzgerald, and R.H. Burris. 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proc. Nat. Acad. Sci. U.S.A. 58: 2071–2078.Google Scholar
  33. Strickland, J.D.H. and T.R. Parsons. 1968. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Bd. Canada 167. 311 pp.Google Scholar
  34. Tabatäbai, M.A. 1974. Determination of sulfate in water samples. Sulfur Inst. J. 10:11–13. Van Dorn, W.G. 1956. Large-volume water samplers. Trans. Amer. Geophys. Union 37: 682684.Google Scholar
  35. Wetzel, R.G. 1983. Limnology. 2nd Ed. Saunders Coll. Philadelphia. 860 pp.Google Scholar
  36. White, W.S. and R.G. Wetzel. 1975. Nitrogen, phosphorus, particulate and colloidal carbon content of sedimenting seston of a hard-water lake. Verh. Int. Ver. Limnol. 19: 330–339.Google Scholar
  37. Whitfield, M. 1971. Ion Selective Electrodes for the Analysis of Natural Waters. Handbook 2, Australian Marine Sciences Association, Sydney. 130 pp.Google Scholar
  38. Willard, H.H., L.L. Merritt, Jr., J.A. Dean, and F.A. Settle, Jr. 1988. Instrumental Methods of Analysis. Wadsworth, Belmont, Calif.Google Scholar
  39. Wood, E.D., F.A.J. Armstrong, and F.A. Richards. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. U.K. 47: 23–31.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem StudiesThe New York Botanical Garden, Cary ArboretumMillbrookUSA

Personalised recommendations