Skip to main content

Effect of Sewage Outfall on a Stream Ecosystem

  • Chapter
Book cover Limnological Analyses

Abstract

Human activity has affected profoundly streams and lakes in all parts of the world. Streams have been subjected to additions of gross amounts of domestic sewage, industrial effluents (e.g., wastes from tanneries, pulp mills, creameries, steel mills, and chemical factories), agricultural wastes, oil spills, mining wastes, urban runoff, radioactive materials, pesticides, waste heat, and numerous other pollutants, often because it was considered expedient and economical to have the unwanted materials carried away (“out of sight”) by the flowing water. Likewise, under the guise of “progress,” streams have been channelized, stabilized, dewatered (for irrigation), and super-watered (artificially increased flow for drinking and power plant needs). In most cases, the effects on the aquatic biota are insidiously cumulative. In some cases, the effects are readily apparent [e.g., acid mine drainage; see Parsons (1968)], but in others the effects accumulate more slowly [e.g., accumulations of trace metals; see Whitton and Say (1975)]. In all cases, a longitudinal gradient develops below the point of insult and, given enough time (distance) without further insult, the stream ecosystem generally recovers to a state of well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association. 1989. Standard Methods for the Examination of Water and Wastewater. 17th Ed. Amer. Public Health Assoc., Inc., New York. 1550 pp.

    Google Scholar 

  • Bertucci, J.J., C. Lue-Hing, D. Zenz, and S.J. Sedita. 1977. Inactivation of viruses during anaerobic sludge digestion. J. Water Poll. Control. Fed. 49: 1642–1651.

    Google Scholar 

  • Bolton, R.L. and L. Klein. 1971. Sewage Treatment-Basic Principles and Trends. Ann Arbor Publ. Michigan. 256 pp.

    Google Scholar 

  • Borchardt, J.A., J.K. Cleland, W.J. Redman, and G. Oliver (eds). 1977. Viruses and Trace Contaminants in Water and Wastewater. Ann Arbor Sci. Publ., Michigan. 249 pp. Hammer, D.A. (ed). 1989.

    Google Scholar 

  • Constructed Wetlands for Wastewater Treatment. Municipal, Industrial and Agricultural. Lewis Publ., Chelsea, MI. 831 pp.

    Google Scholar 

  • Hanes, N.B., G.A. Delaney, and C.J. O’Leary. 1965. Relationship between Escherichia coli, Type I, coliform and enterococci in water. J. Boston Soc. Civil Engrs. 52:129–140.

    Google Scholar 

  • Hynes, H.B.N. 1963. The Biology of Polluted Waters. Liverpool Univ. Press. 202 pp. Likens, G.E. (ed). 1972. Nutrients and Eutrophication. Special Symposia, Vol. I., Amer. Soc. Limnol. Oceanogr., Allen Press, Lawrence, KS. 328 pp.

    Google Scholar 

  • Parsons, J.D. 1968. The effects of acid strip-mine effluents on the ecology of a stream. Arch. Hydrobiol. 65:25–50.

    Google Scholar 

  • Rodina, A.G. 1972. Methods in Aquatic Microbiology. Translated and revised by R.R. Colwell and M.S. Zambruski. Univ. Park Press, Baltimore. 461 pp.

    Google Scholar 

  • Rohlich, G.A. and P.D. Uttormark. 1972. Wastewater treatment and eutrophication. pp. 231245. In: G.E. Likens, Editor. Nutrients and Eutrophication. Special Symposia, Vol. I. Amer. Soc. Limnol. Oceanogr. Allen Press, Lawrence, KS.

    Google Scholar 

  • Whitton, B.A. and P.J. Say. 1975. Heavy metals. pp. 286–311. In: B.A. Whitton, Editor. River Ecology. Univ. of California Press, Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (1991). Effect of Sewage Outfall on a Stream Ecosystem. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4098-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4098-1_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4100-1

  • Online ISBN: 978-1-4757-4098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics