Skip to main content

Bacterial Growth and Productivity

  • Chapter
Book cover Limnological Analyses

Abstract

Earlier discussions emphasized that dead organic matter, called detritus, exists as a spectrum from dissolved organic compounds, organic colloids, and larger particles of organic matter. Dissolved organic matter is in much greater abundance, by about five to ten times, than is particulate organic matter. All microflora must degrade particulate organic matter enzymatically to the dissolved form prior to assimilation for further metabolic breakdown and eventual mineralization to inorganic solutes and gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, B. (ed.). 1988. Methods in Aquatic Bacteriology. Wiley, Chichester. 425 pp.

    Google Scholar 

  • Autio, R.M. 1990. Bacterioplankton in filtered brackish water cultures: Some physical and chemical parameters affecting community properties. Arch. Hydrobiol. 117: 437–451.

    Google Scholar 

  • Bell, R.T., G.M. Ahlgren, and I. Ahlgren. 1983. Estimating bacterioplankton production by the [3H]thymidine incorporation in a eutrophic Swedish lake. Appl. Environ. Microbiol. 45: 1709–1721.

    Google Scholar 

  • Bowden, W.B. 1977. Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl. Environ. Microbiol. 33: 1229–1232.

    Google Scholar 

  • Bratbak, G. 1985. Bacterial biovolume and biomass estimations. Appl. Environ. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Bratbak, G. and I. Dundas. 1984. Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48: 755–757.

    Google Scholar 

  • Bührer, H. 1977. Verbesserte Acridinorangemethode zur Direktzählung von Bakterien aus Seesediment. Schweiz. Z. Hydrol. 39: 99–103.

    Google Scholar 

  • Caldwell, D.E. 1977. The planktonic microflora of lakes. CRC Critical Rev. Microbiol. 5: 305–370.

    Google Scholar 

  • Coveney, M.F. and R.G. Wetzel. 1988. Experimental evaluation of conversion factors for the (3H)thymidine incorporation assay of bacterial secondary productivity. Appl. Environ. Microbiol. 54:2018–2026.

    Google Scholar 

  • Coveney, M.F. and R.G. Wetzel. 1989. Bacterial metabolism of algal extracellular carbon. Hydrobiologia 173: 141–149.

    Article  CAS  Google Scholar 

  • Daley, R.J. 1979. Direct epifluorescence enumeration of native aquatic bacteria: Uses, limitations, and comparative accuracy. pp 29–45. In: J.W. Costerton and R.R. Colwell, Editors. Native Aquatic Bacteria: Enumeration, Activity, and Ecology. ASTM STP695. American Society of Testing Materials, Washington, D.C.

    Google Scholar 

  • Ducklow, H.W. and S.M. Hill. 1985. Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings. Limnol. Oceanogr. 30: 260–272.

    Google Scholar 

  • van Es, F.B. and L.-A. Meyer-Reil. 1983. Biomass and metabolic activity of heterotrophic marine bacteria. Adv. Microbial Ecol. 6: I11–170.

    Google Scholar 

  • Francisco, D.E., R.A. Mah, and A.C. Rabin. 1973. Acridine orange-epifluorescence technique for counting bacteria in natural waters. Trans. Amer. Microsc. Soc. 92: 416–421.

    Google Scholar 

  • Fuhrman, J.A. and F. Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Kirchman, D., H. Ducklow, and R. Mitchell. 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44:1296–1307.

    Google Scholar 

  • Kirchman, D.L., E. K’Nees, and R. Hodson. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49: 599–607.

    Google Scholar 

  • Kirchman, D.L., S.Y. Newell, and R.E. Hodson. 1986. Incorporation versus biosynthesis of leucine: Implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems. Mar. Ecol. Prog. Ser. 32: 47–59.

    Google Scholar 

  • Lovell, C.R. and A. Konopka. 1985. Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation. Appl. Environ. Microbiol. 49: 492–500.

    Google Scholar 

  • Moriarty, D.J.W. 1986. Measurement of bacterial growth rates in aquatic systems using rates of nucleic acid synthesis. Adv. Aquatic Microbiol. 9: 245–292.

    Google Scholar 

  • Moriarty, D.J.W. 1989. Accurate conversion factors for calculating bacterial growth rates from thymidine incorporation into DNA: Elusive or illusive? Ergebn. Limnol. Arch. Hydrobiol. (In press).

    Google Scholar 

  • Murray, R.E. and R.E. Hodson. 1985. Annual cycle of bacterial secondary production in five aquatic habitats of the Okefenokee Swamp ecosystem. Appl. Environ. Microbiol. 49:650–655.

    Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web: A changing paradigm. BioScience 9:499–504. Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Riemann, B. and M. S¢ndergaard. 1985. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8:519–536.

    Google Scholar 

  • Riemann, B., P.K. Bj¢rnsen, S. Newell, and R. Fallon. 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]thymidine. Limnol. Oceanogr. 32:471–476.

    Google Scholar 

  • Robarts, R.D. and R.J. Wicks. 1989. [Methyl-3H]thymidine macromolecular incorporation and lipid labeling: Their significance to DNA labeling during measurements of aquatic bacterial growth rate. Limnol. Oceanogr. 34: 213–222.

    Google Scholar 

  • Scavia, D. and G.A. Laird. 1987. Bacterioplankton in Lake Michigan: Dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32:1017–1033.

    Google Scholar 

  • Simon, M. and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201–213.

    Google Scholar 

  • Sorokin, Y.I. and H. Kadota (eds). 1972. Techniques for the Assessment of Microbial Production and Decomposition in Fresh Waters. Blackwell, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wetzel, R.G., Likens, G.E. (1991). Bacterial Growth and Productivity. In: Limnological Analyses. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4098-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4098-1_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4100-1

  • Online ISBN: 978-1-4757-4098-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics