A Preliminary Investigation into the Possible Emission Sources for Atmospheric Mercury Found in the Lake Champlain Basin

  • Ning Gao
  • Nathan G. Armatas
  • Benjamin Puchalski
  • Philip K. Hopke
  • Richard L. Poirot
Conference paper


Several types of source-receptor modeling methods have been applied to the atmospheric mercury data collected by the long term monitoring site at PMRC, Underhill, VT to infer the possible emission source types and source areas that may have significant contributions to mercury deposition into the Lake Champlain Basin. The methods employed were potential source contribution function (PSCF) analysis, residence time analysis (RTA), and multiple regression analysis against the factors of the positive matrix factorization (PMF) of the fine particulate data from the same site. The possible source areas are displayed by the PSCF maps and the RTA maps. Source contributions were calculated for vapor phase and particulate mercury.


Positive Matrix Factorization Atmospheric Mercury Potential Source Contribution Function Particulate Mercury Incremental Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burke, J., Hoyer, M., Keeler, G., and Schetbaiskoy, T., 1995, Wet deposition of mercury and ambient mercury concentrations at a site in the Lake Champlain Basin, Water Air Soil Polka. 80: 353–362.CrossRefGoogle Scholar
  2. Colman, J. A. and Glatit, S. F.,1994, Gchemical data on concentrations of inorganic constituents and polychlorinated biphenyl congeners in streambed sediments in tributaries to Lake Champlain in New York, Vermont and Quebec, 1992, US Geological Survey, Bow, New Hampshire, Open File Report 94472.Google Scholar
  3. Fitzgerald, W. F., and Gill, G. A., 1979, Subnanogram detection of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis, Anal. Chem. 51: 1714–1720.CrossRefGoogle Scholar
  4. Fluocchini, R. G., Cahill, T. A., Eldered, R. A., and Feeney, P.J., 1990, Particulate sampling in the Northeast: a description of the NESCAUM network. Transactions: A & WMA; EPA Specialty Conference on Visibility and Fine Particles, Mathai, C.V., ED. Estes Park, CO.Google Scholar
  5. Gao, N., Hopke, P. K., and Reid, N. W., 1996, Possible sources for some trace elements found in airborne particles and precipitation in Dorset, Ontario, J. Air & Waste Management Assoc. 46: 1035–1047.CrossRefGoogle Scholar
  6. Kamman, N. C. and Engstrom, D. R., 2002, Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 21OPb-dated sediment cores, Atmos. Environ. 36: 1599–1609.CrossRefGoogle Scholar
  7. Keeler, G., Glinsom, G., and Pirrone, N., 1995, Particulate mercury in the atmosphere: its significance, transport, transformation and sources, Water Air Soil Polka. 80: 159–168.CrossRefGoogle Scholar
  8. Landers, D. H., Gubala, C., Vertu, M., Lucotte, M., Johansson, K., Vlasova, T., and Lockhart, W. L, 1998, Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in arctic and boreal ecosystems, Atmos. Environ. 32: 919–928.CrossRefGoogle Scholar
  9. McIntosh, A. (ed.), 1994, Lake Champlain sediment toxics assessment program: an assessment of sediment associated contaminants in Lake Champlain, Phase I, Lake Champlain Basin Program Technical Report No. 5. Lake Champlain Basin Program, Grand Isle, Vermont.Google Scholar
  10. Nriagu, J. O., Legacy of mercury pollution, Nature 363: 589.Google Scholar
  11. Nriagu, J. 0., 1994, Mercury pollution from the past mining of gold and silver in the Americas, Science of the Total Environment 149: 167–181.CrossRefGoogle Scholar
  12. Nriagu, J. 0., 1996, A history of global metal pollution, Science 272: 223–224.CrossRefGoogle Scholar
  13. Paatero, P. and Tapper, U., 1994, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics 5: 111–126.CrossRefGoogle Scholar
  14. Poirot, R. L, Galvin, P. J., Gordon, N., Quart, S., Arsdale, A. V., and Flocchini, R. G., 1991, Annual and seasonal fine particle composition in the Northeast: Second year results from the NESCAUM monitoring network, 91–49.1, Proceedings 84th Annual A & WMA Meeting, Vancouver, Canada.Google Scholar
  15. Poirot, R. and Wishinski, P., 1996, VT DEC air trajectory analysis of long-term ozone climatology, status report to OTAG Air Quality Analysis Workgroup, Google Scholar
  16. Poirot, R. L and Wishinski, P.R., 1998, Long-term ozone trajectory climatology for the Eastern US, Part 2: Results“, 98-A615, Proceedings 91st Animal A & WMA Meeting, San Diego, CA.Google Scholar
  17. Poirot, R. L, Wishinski, P., Schichtel., B., and Girton, P., 1999, Air trajectory pollution climatology for the Lake Champlain Basin, in T Manley and P. Manley, eds., Lake Champlain in Transition: From Research Toward Restoration, Water Science and Application, American Geophysical Union, Washington, DC.Google Scholar
  18. Poirot,R. L, Wishinski, P. R., Hopke, P. K., and Polissar, A. V., 2001, Comparative application of multiple receptor methods to identify Aaerosol sources in northern Vermont, Environ Sci. Technol. 35: 4622–4636.CrossRefGoogle Scholar
  19. Polissar, A.V., Hopke P. K., and Poirot. R. L, 2001, Atmospheric aerosol over Vermont: Chemical composition and sources,“ Environ. Sci. TechnoL 35: 4604–4621.CrossRefGoogle Scholar
  20. Porcella, D. B., Huckabee, J. W., and Weatley, B., 1995a, Mercury asA Glaobal Pollutant. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  21. Porcella, D. B., Chu, P., and Allan., M. A., 1995b, Inventory of North American Hg emissions to the atmosphere: Relationship to the global mercury cycle,“ In Proceedings of the NATO Advanced Workshop on Glabal Hg Cycle, Novosibirsk, Siberia, Russia. July 10–14.Google Scholar
  22. Rolph, G. D. 1996, NGM Archive TD-6140, January 1991-June 1996, Prepared for National Climate Data Center (NCDC).Google Scholar
  23. Scherbatskoy, T., Shanley, J. B., and Keeler, G. J., 1998, Factors controlling mercury transport in an upland forested catchment, Water, Air, Soil Pollut., 105: 427–438.CrossRefGoogle Scholar
  24. Schichtel, B. A. and Husar, R. B., 1996, Regional simulation of atmospheric pollutants with the CAPITA Monte Carlo Model, J. Air Waste Manage. Assoc. 47: 331–343.Google Scholar
  25. Schichtel, B. and Wishinski, P., 1996, HY-SPLIT and CAPITA Monte Carlo Model Back Trajectory Comparison, Scholar
  26. Shanley, J.B., Donlon, A. F., Scherbatskoy, T., and Keeler, G., 1999, Mercury cycling and transport in the Lake Champlain Basin, in T.O. and P.L. Manley, eds., Lake Champlain in Transition: From Research Toward Restoration, Water Science and Application, American Geophysical Union, Washington, DC, 1, 277–299.Google Scholar
  27. United Nations Environmental Program, 2002, Global Mercury Assessment, UNEP, Geneva, Switzerland. US-EPA, 1997, Mercury Study Report to Congress. Vol.1., EPA-600;R-97–003.Google Scholar
  28. Wishinski, P. R. and Poirot, R. L., 1998, Long-term ozone trajectory climatology for the Eastern US, Part 1: Methods, 98-A615, Proceedings 91st Annual A & WMA Meeting, San Diego, CA.Google Scholar
  29. Younger, M. S., 1979, A Handbook for Linear Regression, Wadsworth, Inc., California, pp. 246–247.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ning Gao
    • 1
  • Nathan G. Armatas
    • 1
  • Benjamin Puchalski
    • 1
  • Philip K. Hopke
    • 2
  • Richard L. Poirot
    • 3
  1. 1.Department of ChemistrySt. Lawrence UniversityCantonUSA
  2. 2.Department of Chemical EngineeringClarkson UniversityPotsdamUSA
  3. 3.Department of Environmental ConservationUSA

Personalised recommendations