Skip to main content

A Landscape Scale Evaluation of Phosphorus Retention in Wetlands of the Laplatte River Basin, Vermont, USA

  • Conference paper
Book cover Lake Champlain: Partnerships and Research in the New Millennium

Abstract

We used a landscape scale approach to examine phosphorus retention in wetlands of the LaPlatte River basin (13,723 ha), Vermont. Total phosphorus (TP) export from 15 study catchments (149–1,396 ha) was measured on 18 dates, representing a range in seasons and hydrologic conditions. Multiple regression models were developed to relate TP export to 14 possible explanatory variables based on land cover/use, quantified using a geographic information system. Most wetland variables had significant (p < 0.10) negative relationships with TP export on at least 1 date. These relationships were strongest on 2 spring snowmelt events, when 31% of the annual TP export from the LaPlatte River basin occurred. Overall, the percentage of nonagricultural poorly and very poorly drained soils was the best representation of phosphorus sinks in the study catchments. Identifying lands with poorly drained soils and no known sources of phosphorus may be a more functional and simpler method of delineating P sinks in the landscape than identifying wetlands using jurisdictional definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamus, P.R., 1983, A Method for Wetland Functional Assessment. Volume I. FHWA Assessment Method. Report Number FHWA-IP-82–24, U.S. Department of Transportation, Washington, D.C.

    Google Scholar 

  • Adamus, P.R., ARA, Inc, Clairain, Jr., E.J., Smith, R.D., and Young, R.E., 1987, Wetland Evaluation Technique (WET) Volume II: Methodology. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Amman, A.P., and Stone, A.L., 1991, Method for the Comparative Evaluation of Nontidal Wetlands in New Hampshire, New Hampshire Department of Environmental Services, Concord, New Hampshire.

    Google Scholar 

  • Anderson, J.R., Hardy, E.E., Roach, J.T., and Witmer, R.E., 1976, A Land Use and Land Cover Classification System for use with Remote Sensor Data, U.S. Geological Survey Professional Paper 964. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Appleton, J., 1993, Unpublished documentation, Chittenden County Regional Planning Commission, Essex Junction, Vermont.

    Google Scholar 

  • Begg, J. S., Lavigne, R. L., Veneman, P. L. M., 2001, Reed beds: Constructed wetlands for municipal wastewater treatment plant sludge dewatering, Water Sci TechnoL 44: 393–398.

    CAS  Google Scholar 

  • Bernier, P.Y., 1985, Variable source areas and storm-flow generation: An update of the concept and a simulation effort, J. HydroL 79: 195–213.

    Article  Google Scholar 

  • Boyt, F.L., Bayley, S.E. and Zoltek, Jr., J., 1977, Removal of nutrients from treated municipal wastewater by wetland vegetation, J. Water Poll. Control Fed. 349: 789–799.

    Google Scholar 

  • Bridgham, S. D., Johnston, C. A., Schubauer-Berigan, J. P., and Weishampel, P., 2001, Phosphorus sorption dynamics in soils and coupling with surface and pore water in riverine wetlands, Soil Sci. Soc. Amer. J. 65 (2): 577–588.

    Article  CAS  Google Scholar 

  • Brinson, M.M., 1993, A Hydrogeomorphic Classification for Wetlands, Technical Report Number WRP-DE4. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Chambers, J.M., Wrigley, T.J., and McComb, A.J., 1993, The potential use of wetlands to reduce phosphorus export from agricultural catchments, Fertil. Res. 36: 157–164.

    Article  Google Scholar 

  • Detenbeck, N.E., Johnston, C.A., and Niemi, G.J., 1993, Wetland effects on lake water quality in the Minneapolis/St. Paul metropolitan area, Landscape. EcoL 8: 39–61.

    Article  Google Scholar 

  • Devito, K. J., Creed, I. F., Rothwell, R. L., Prepas, E. E., 2000, Landscape controls on phosphorus loading to boreal lakes: Implications for the potential impacts of forest harvesting, Can. J. Fish. Aquatic Sci 57 (10): 1977–1984.

    Article  CAS  Google Scholar 

  • Drizo, A., Comeau, Y., Forget, C., and Chapuis, R. P., 2002, Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetland systems, Environ. Sci. Tech. 36 (21): 4642–4648.

    Article  CAS  Google Scholar 

  • Dunne, T., and Black, R.D., 1970, Partial area contribution to storm runoff in a small New England watershed, Water Resour. Res. 6 (5): 1296–1311.

    Article  Google Scholar 

  • Dunne, T., Moore, T.R., and Taylor, C.H., 1975, Recognition and prediction of runoff-producing zones in humid regions, HydroL Sci 3: 305–327.

    Google Scholar 

  • Eckardt, B.W., and Moore, T.R., 1990, Controls on dissolved organic carbon concentrations in streams, Southern Quebec, Can. J. of Fish. Aquat. Sci 47: 1537–1544.

    Article  Google Scholar 

  • Ellis, B.G., Erickson, A.E., and Wolcott, A.R., 1978, Nitrate and Phosphorus Runoff Losses from Small Watersheds in Great Lakes Basin, EPA–600/3–78–0128, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Eshleman, K.N., Pollard, J.S., and Kuebler O’Brien, A., 1993, Determination of contributing areas for saturation overland flow from chemical hydrograph separations, Water Resour. Res. 29 (10): 3577–3587.

    Article  Google Scholar 

  • Federal Interagency Committee for Wetland Delineation., 1989, Federal Manual for Identifying and Delineating Jurisdictional Wetlands, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington, D.C. Cooperative technical publication.

    Google Scholar 

  • Fetter, Jr., C.W., Sloey, W.E., and Spangler, F.L., 1978, Use of a natural marsh for wastewater polishing, J. Water Poll. Control Fed 50: 290–307.

    CAS  Google Scholar 

  • Gburek, W.J., 1990, Initial contributing area of a small watershed, J. HydroL 118: 387–403.

    Article  Google Scholar 

  • Gehrels, J., and Mulamoottil, G., 1989, The transformation and export of phosphorus from wetlands, Hydrol. Proc. 3: 365–370.

    Article  Google Scholar 

  • Goldsmith, L.A., 1994, A Landscape Level Evaluation of Wetland Structure and Function in a Large, Multiuse Basin, Master’s Thesis, University of Vermont, Burlington, Vermont.

    Google Scholar 

  • Hammond, R.E., Coakley, M.F., Kierstad, C., and Kiah, R.G., 1996, Water Resources Data for New Hampshire and Vermont, Water Year 1995, U.S. Geological Survey, Pembroke, New Hampshire.

    Google Scholar 

  • Howard-Williams, C., 1985, Cycling and retention of nitrogen and phosphorus in wetlands: A theoretical and applied perspective, Freshwater Biol. 15: 391–431.

    Article  CAS  Google Scholar 

  • Johnson, A.H., Bouldin, D.R., Goyette, E.A., and Hedges, A.M., 1976, Phosphorus loss by stream transport from a rural watershed: Quantities, processes, and sources, J. Environ. QuaL 5 (2): 148–157.

    Article  CAS  Google Scholar 

  • Johnston, C.A., Detenbeck, N.E., and Niemi, G.J., 1990, The cumulative effect of wetlands on stream water quality and quantity. A landscape approach, Biogeochemistry 10: 105–141.

    Article  Google Scholar 

  • Kadlec, R. H.;, Reddy, K. R., 2001, Temperature effects in treatment wetlands. Water Environ. Res. 73 (5): 543–557.

    CAS  Google Scholar 

  • Kao, C. M., and Wu, M. J., 2001, Control of non-point source pollution by a natural wetland, Water Sci. Technol., 43 (5): 169–174.

    CAS  Google Scholar 

  • Kennedy, E.J., 1984, Discharge ratings at gaging stations, in: Techniques of Water Resources Investigations of the United States Geological Survey. Book 3. Applications of Hydraulics, U.S. Government Printing Office, Washington, D.C., pp. 1–59.

    Google Scholar 

  • Klopatek, J.M., 1975, The role of emergent macrophytes in mineral cycling in a freshwater marsh, in: Mineral Cycling in Southeastern Ecosystems, Howell, F.G., Gentry, J.B., and Smith, M.H., eds., ERDA Symposium Series CONF-740513, Springfield, Virginia, pp. 357–393.

    Google Scholar 

  • Lee, G.F., Bentley, E., and Admundson, R., 1975, Effect of marshes on water quality, in: Coupling of Land and Water Systems, Hasler, A.D., ed., Springer, New York, pp. 105–127.

    Chapter  Google Scholar 

  • Longabucco, P., and Rafferty, M.R., 1989, Delivery of nonpoint source phosphorus from cultivated mucklands to Lake Ontario,. 1. Environ. Qual. 18 (2): 157–163.

    Article  CAS  Google Scholar 

  • Lowrance, R.R., Todd, R.L., and Asmussen, L.E., 1984, Nutrient cycling in an agricultural watershed: II. Streamflow and artificial drainage, J. Environ. Qual. 13 (1): 27–32.

    Article  CAS  Google Scholar 

  • Meade, R.H., 1982, Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States,. 1. Geol. 90 (3): 235–252.

    Google Scholar 

  • Meals, D.W., 198, Monitoring changes in agricultural runoff quality in the La Platte River watershed, Vermont, In: Perspectives on Nonpoint Source Pollution, EPA–440/5–85–001, U.S. Environmental Protection Agency, Washington, D.C., pp. 185 – 190.

    Google Scholar 

  • Meals, D.W., 1993, Assessing nonpoint phosphorus control in the LaPlatte River watershed, Lake Reservoir Manage. 7: 197–207.

    Article  Google Scholar 

  • Mitsch, W.J., Dorge, C.L., and Wiemhoff, J.R., 1979, Ecosystem dynamics and a phosphorus budget of an alluvial cypress swamp in southern Illinois, Ecology 60: 1116–1124.

    Article  Google Scholar 

  • Mitsch, W.J., and Gosselink, J.G., 199, Wetlands,2nd Edition, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Mitsch, W.J., and Reeder, B.C., 1992, The role of wetlands in the control of nutrients with a case study of western Lake Erie, in: Ecological Engineering: An Introduction to Ecotechnology. Mitsch, W.J. and Jorgensen, S.E., eds., John Wiley and Sons, New York, pp. 129–158.

    Google Scholar 

  • Monke, E.J., Nelson, D.W., Beasley, D.B., and Boucher, A.B., 1981, Sediment and nutrient movement from the Black Creek watershed, Trans. Am. Soc. Agric. Eng. 24 (2): 391–395.

    CAS  Google Scholar 

  • Montgomery, D.R., and Dietrich, W.E., 1995, Hydrologic processes in a low-gradient source area, Water Resour. Res. 13 (1): 1–10.

    Article  Google Scholar 

  • Moustafa, M. Z., 2000, Do Wetlands Behave Like Shallow Lakes in Terms of Phosphorus Dynamics? J. Amer. Water Res. Assoc. 36: 43–54.

    Article  CAS  Google Scholar 

  • Mulholland, P.J., Wilson, G.V., and Jardine, P.M., 1990, Hydrogeochemical response of a forested watershed to storms: Effects of preferential flow along shallow and deep pathways, Water Resour. Res. 26 (12): 3021–3036.

    Article  CAS  Google Scholar 

  • National Oceanographic and Atmospheric Administration., 1995, Local Climatological Data. Annual Summary with Comparative Data. Burlington, Vermont, National Climatic Data Center, Asheville, North Carolina.

    Google Scholar 

  • Neter, J., Wasserman, W., and Kutner, M.H., 1989, Applied Linear Regression Models, R.D. Irwin, Inc., Homewood, Illinois.

    Google Scholar 

  • O’Loughlin, E.M., 1986, Prediction of surface saturation zones in natural catchments by topographic analysis, Water Resour. Res. 22 (5): 794–804.

    Article  Google Scholar 

  • Omemik, J. M., 1976, The Influence of Land Use on Stream Nutrient Levels, EPA–600/3–76–014, U.S. Environmental Protection Agency, Corvallis, Oregon.

    Google Scholar 

  • Paschal, Jr., J.E., and Sherwood, D.A., 1987, Relation of Sediment and Nutrient Loads to Watershed Characteristics and Land Use in the Otisco Lake Basin, Onondaga County, New York. Water-Resources Investigations Report 86–4026, U.S. Geological Survey, Ithaca, New York.

    Google Scholar 

  • Peverly, J.H., 1982, Stream transport of nutrients through a wetland, J. Environ. Qual. 11: 38–43.

    Article  CAS  Google Scholar 

  • Pionke, H.B., Hoover, J.R., Schnabel, R.R., Gburek, W.J., Urban, J.B., and Rogowski, A.S., 1988, Chemical-hydrologic interactions in the near-stream zone, Water Resour. Res. 24 (7): 1101–1110.

    Article  CAS  Google Scholar 

  • Prairie, Y.T., and Kalff, J., 1986. Effect of catchment size on phosphorus export. Water Resour. Bull. 22 (3): 465–470.

    CAS  Google Scholar 

  • Preston, S.D., Bierman, Jr., V.J., and Silliman, S.E., 1989, An evaluation of methods for the estimation of tributary mass loads, Water Resour. Res. 25 (6): 1379–1389.

    Article  CAS  Google Scholar 

  • Rantz, S.E., 1982, Measurement and Computation of StreamfTow: Volume 1. Measurement of Stage and Discharge, U.S. Geological Survey Water-Supply Paper 2175, U. S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Richards, R.P., and Holloway, J., 1987, Monte Carlo studies of sampling strategies for estimating tributary loads, Water Resour. Res. 23 (10): 1939–1948.

    Article  CAS  Google Scholar 

  • Sanchez-Carrillo, S., and Alvarez-Cobelas, M., 2001, Nutrient dynamics and eutrophication patterns in semiarid wetland: The effects of fluctuating hydrology. Water, Air, Soil Pollut. 131: 97–118.

    Article  CAS  Google Scholar 

  • Smeltzer, E., 1996. Unpublished data. Vermont Agency of Natural Resources. Waterbury, Vermont.

    Google Scholar 

  • Tilton, D.L., and Kadlec, R.H., 1979, The utilization of a fresh-water wetland for nutrient removal from secondarily treated waste water effluent, J.Environ. Qual. 8: 328–334.

    Article  CAS  Google Scholar 

  • Tim, U. S., Saied, M., and Shanholtz, V.O., 1992, Identification of critical nonpoint pollution source areas using geographic information systems and water quality modeling, J. Amer. Water Res. Assoc. 28: 877–887

    Article  CAS  Google Scholar 

  • U.S.D.A. Natural Resource Conservation Service., 1995, Soil Survey Geographic (SSURGO) Data Base Data Use Information. Miscellaneous Publication Number 1527, U.S. Department of Agriculture.

    Google Scholar 

  • U.S.D.A. Soil Conservation Service., 1989, Soil Survey of Chittenden County, Vermont, U.S. Department of Agriculture, Vermont Agricultural Experiment Station, and The Vermont Department of Forests and Parks. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency., 1983, Methods for Chemical Analysis of Water and Wastes. EPA–600/4–79–020, U.S. Environmental Protection Agency, Cincinnati, Ohio.

    Google Scholar 

  • U.S. Environmental Protection Agency, 2001, Ambient Water Quality Recommendations - Information Supporting the Development of State and Tribal Nutrient Criteria - Rivers and Streams in Nutrient Ecoregion VIII. EPA 822-B-01–015, December 2001.

    Google Scholar 

  • Uttormark, P.D., Chapin, J.D., and Green, K.M., 1974, Estimating Nutrient Loadings to Lakes from Non point Sources, EPA–660/3–74–020, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Uusi-Kamppa, J., B. Braskerud, H, Jansson, N. Syversen, and R. Uusitalo, 2000, Buffer zones and constructed wetlands as filters for agricultural phosphorus, J. Environ. Qua 29: 151–158.

    CAS  Google Scholar 

  • Vermont Geographic Iformation System., 1992, Policies, Standards, Guidelines, and Procedures Handbook, Vermont Center for Geographic Information, Inc. (VCGI), Burlington, Vermont.

    Google Scholar 

  • Weller, C.M., Watzin, M.C., and Wang, D., 1996, Role of wetlands in reducing phosphorus loading to surface water in eight watersheds in the Lake Champlain Basin, Environ. Manage. 20 (5): 731–739.

    Article  Google Scholar 

  • Whigham, D.F., Chitterling, C., and Palmer, B., 1988, Impacts of freshwater wetlands on water quality: A landscape perspective, Environ. Manage. 12: 663–671.

    Article  Google Scholar 

  • Wickham, J. D., Rütters, K. H., O’Neill, R. V., Reckhow, K. H., Wade, T. G., and Jones, B.J., 2000, Land Cover As a Framework for Assessing Risk of Water Pollution, J. Amer. Water Res. Assoc. 36: 1417–1422.

    Article  Google Scholar 

  • Yarbro, L.A., Kuenzler, E.J., Mulholland, P.J., and Sniffen, R.P., 1984, Effects of stream channelization on exports of nitrogen and phosphorus from North Carolina Coastal Plain watersheds, Environ. Manage. 8: 151–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Wang, D., Windhausen, L.J., Braun, D.C. (2004). A Landscape Scale Evaluation of Phosphorus Retention in Wetlands of the Laplatte River Basin, Vermont, USA. In: Manley, T.O., Manley, P.L., Mihuc, T.B. (eds) Lake Champlain: Partnerships and Research in the New Millennium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4080-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4080-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3449-9

  • Online ISBN: 978-1-4757-4080-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics