Continuation of Periodic Solutions

  • Kenneth R. Meyer
  • Glen R. Hall
Part of the Applied Mathematical Sciences book series (AMS, volume 90)


In the last chapter, some local results about periodic solutions of Hamiltonian systems were presented. The systems contain a parameter, and the conditions under which a periodic solution can be continued in the parameter were discussed. Since Poincaré used these ideas extensively, it has become known as Poincaré’s continuation method. By Lemma V.E.2, a solution ø(t, ξ′) of an autonomous differential equation is T-periodic if and only if ø(T’) = ø is the general solution. This is a finite-dimensional problem since is a function defined in a domain of ℝm+1 into ℝm. Thus, periodic solutions can be found by the finite-dimensional methods, i.e., the finite-dimensional implicit function theorem, the finite-dimensional fiixed point theorems, the finite-dimensional degree theory, etc. This chapter will present results which depend only on the finite-dimensional implicit function theorem. Chapter X will present a treatment of fixed point methods as they apply to Hamiltonian systems. In this chapter the periodic solutions vary continuously with the parameter (“can be continued”), but Chapter VII will discuss the bifurcations of periodic solutions.


Periodic Solution Equilibrium Point Circular Orbit Implicit Function Theorem Libration Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kenneth R. Meyer
    • 1
  • Glen R. Hall
    • 2
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Mathematics DepartmentBoston UniversityBostonUSA

Personalised recommendations