Snake Venom Disintegrins and Disintegrin-Like Domains: Soluble Antagonists and Cellular Ligands of Integrin Receptors

  • Juan J. Calvete


Snake venoms contain a complex mixture of pharmacologically active peptides and proteins which have many biological activities. Venoms of the Elapidae and Hydrophiidae families are neurotoxic, whereas those from Viperidae and Crotalidae species cause death by either intravascular clotting or systemic and local hemorrhage.1 Predominant in the group of venom proteins that inhibit hemostasis through a nonenzymatic mechanism are the disintegrins, a family of low molecular mass (5–9 kDa), cysteine-rich peptides.2 Disintegrins are potent inhibitors of platelet aggregation with IC50s in the nanomolar range. They exert their biological activities by competing with, and preventing, the binding of adhesive ligands to platelet integrin αIIbβ3, the fibrinogen receptor.2 In addition, several cells other than platelets have been shown to bind disintegrins in adhesion-inhibition assays and these interactions may primarily involve integrins αvβ3 and α5β1, known as the classical vitronectin and fibronectin receptors, respectively.3


Snake Venom Disulphide Bridge Integrin Antagonist Metalloproteinase Domain Platelet Integrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teng C-M, Huang T-F. Snake venom constituents that affect platelet function. Platelets 1991; 2: 1–11.CrossRefGoogle Scholar
  2. 2.
    Niewiarowski S, McLane MA, Klockzewiak M et al. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Sem Hematol 1994; 31: 289–300.Google Scholar
  3. 3.
    Pfaff M, McLane MA, Beviglia L et al. Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins allb133, aV 33 and a5ßl and in cell adhesion inhibition. Cell Adh Commun 1994; 2: 491–501.CrossRefGoogle Scholar
  4. 4.
    Huang T-F, Holt JC, Kirby EP et al. Trigramin: primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIb/IIIa complex on human platelets. Biochemistry 1989; 28: 661–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Gan ZR, Gould RJ, Jacobs JW et al. Echistatin: a potent platelet aggregation inhibitor from the venom of the viper Echis carinatus. J Biol Chem 1988; 263: 19827–32.Google Scholar
  6. 6.
    Gould RJ, Polokoff MA, Friedman PA et al. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 1990; 195: 168–71.PubMedGoogle Scholar
  7. 7.
    Scarborough RM, Rose JW, Hsu MA et al. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 1991; 266: 9359–62.PubMedGoogle Scholar
  8. 8.
    Garsky VM, Lumma PK, Freidinger RM et al. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc Natl Acad Sci USA 1989; 86: 4022–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Dennis MS, Carter P, Lazarus RA. Binding of kistrin with platelet glycoprotein IIb- IIIa: analysis by site-directed mutagenesis. Proteins: Struct Funct Genet 1993; 15: 312–21.CrossRefGoogle Scholar
  10. 10.
    Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–7.CrossRefPubMedGoogle Scholar
  11. 11.
    D’Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 1991; 16: 246–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Seymour JL, Henzel WJ, Nevin B et al. Decorsin. A potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora. J Biol Chem 1990; 265: 10143–7.PubMedGoogle Scholar
  13. 13.
    Mazur P, Henzel WJ, Seymour JL et al. Ornatins: potent glycoprotein IIb-IIIa antagonists and platelet aggregation inhibitors from the leech Placobdella ornata. Eur J Biochem 1991; 1073–82.Google Scholar
  14. 14.
    McDowell RS, Dennis MS, Louie A et al. Mambin, a potent glycoprotein IIb-IIIa antagonit and platelet aggregation inhibitor structurally related to short neurotoxins. Biochemistry 1992; 31: 4766–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Knapp A, Degenhardt T, Dodt J. Hirudisins. Hirudin-derived thrombin inhibitors with disintegrin activity. J Biol Chem 1992; 267: 24230–4.PubMedGoogle Scholar
  16. 16.
    Mason PW, Rieder E, Baxt B. RGD sequence of foot-and mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci USA 1994; 91: 1932–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Abrams C, Deng Y-J, Steiner B et al. Determinants of specificity of a baculovirusexpressed antibody Fab fragment that binds selectively to the activated form of integrin am,133. J Biol Chem 1994; 18781–8.Google Scholar
  18. 18.
    Kunicki TJ, Ely KR, Kunicki TC et al. The exchange of Arg-Gly-Asp (RGD) and Arg-TyrAsp (RYD) binding sequences in a recombinant murine Fabfragment specific for the integrin ce5433 does not alter integrin recognition. J Biol Chem 1995; 270: 16660–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Soteriadou KP, Remoundos MS, Katsikas MC et al. The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Lei_rhmania mimics the Arg-Gly-Asp-Ser attachment regio of fibronectin. J Biol Chem 1992; 267: 13980–5.PubMedGoogle Scholar
  20. 20.
    Calvete JJ, Schäfer W, Soszka T et al. Identification of the disulphide bond pattern in albolabrin, an RGD-containing peptide from the venom of Trimeresurus albolabris: significance for the expression of platelet aggregation inhibitory activity. Biochemistry 1991; 30: 5225–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Calvete JJ, Wang Y, Mann K et al. The disulphide bridge pattern of snake venom disintegrins, flavoridin and echistatin. FEBS Lett 1992; 309: 316–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Klaus W, Broger C, Gerber P et al. Determination of the disulphide bonding pattern in proteins by local and global analysis of nuclear magnetic resonance data. J Mol Biol 1993; 232: 897–906.CrossRefPubMedGoogle Scholar
  23. 23.
    Adler M, Carter P, Lazarus RA et al. Cysteine pairing in the glycoprotein IIbIIIa antagonist kistrin using NMR, chemical analysis, and structure calculations. Biochemistry 1993; 32: 282–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Gray WR. Echistatin disulphide bridges: selective reduction and linkage assignment. Protein Sci 1993; 1749–55.Google Scholar
  25. 25.
    Bauer M, Sun Y, Degenhardt C et al. Assignment of all four disulphide bridges in echistatin. J Prot Chem 1993; 12: 759–61.CrossRefGoogle Scholar
  26. 26.
    Cooke RM, Carter BG, Murray-Rust P et al. The solution structure of echistatin: evidence for disulphide bond rearrangement in homologous snake toxins. Protein Engineer 1992; 5: 473–7.CrossRefGoogle Scholar
  27. 27.
    Adler M, Lazarus RA, Dennis MS et al. Solution structure of kistrin, a potent platelet aggregation inhibitor and GPIIb-IIIa antagonist. Science 1991; 253: 445–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Senn H, Klaus W. The nuclear magnetic resonance solution structure of flavoridin, an antagonist of the platelet GPIIb-IIIa receptor. J Mol Biol 1993; 232: 907–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Brockel C, Cowley DJ, Pelton JT. Conformational studiesof the `RGD’ containing peptide echistatin and close analogs by circular dichroism and fluorescence. Biochim Biophys Acta 1992; 1122: 196–202.CrossRefPubMedGoogle Scholar
  30. 30.
    Williams RJP. NMR studies of motility within protein structures. Eur J Biochem 1989; 183: 479–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Main AL, Harvey TS, Baron M et al. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 1992; 71: 671–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Dickinson CD, Veerapandian B, Dai X-P. Crystal structure of the tenth III cell adhesion module of human fibronectin. J Mol Biol 1994; 236: 1079–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Leahy DJ, Hendrickson WA, Aukhil I. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 1992; 258: 987–991.CrossRefPubMedGoogle Scholar
  34. 34.
    Kodandapani R, Veerapandian B, Kunicki TJ et al. Crystal structure of the OPG2 Fab. An antireceptor antibody that mimics an RGD cell adhesion site. J Biol Chem 1995; 270: 2268–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Verdaguer N, Mitten MG, Andrea D et al. Structure of the major antigenic loop of foot-and mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 1995; 11: 1690–6.Google Scholar
  36. 36.
    Sutcliffe MJ, Jaseja M, Hyde EI et al. Three-dimensional structure of the RGD- containing neurotoxin homologue dendroaspin. Nature Struct Biol 1994; 802–7.Google Scholar
  37. 37.
    Krezel AM, Wagner G, Seymour-Ulmer J et al. Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science 1991; 1944–7.Google Scholar
  38. 38.
    Aumailley M, Gurrath M, Müller G et al. Arg-Gly-Asp constrained within cyclic peptapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment PI. FEBS Lett 1991; 291: 50–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Karczewski J, Endris R, Connolly TM. Disaggregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J Biol Chem 1994; 269: 6702–8.PubMedGoogle Scholar
  40. 40.
    Scarborough RM, Naughton MA, Teng W et al. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein Ilb- IIIa. J Biol Chem 1993; 268: 1066–73.PubMedGoogle Scholar
  41. 41.
    Scarborough RM, Rose JW, Naughton MN et al. Characterizationof the integrin specificities of disintegrins isolated from American pit viper venoms. J Biel Chem 1993; 268: 1058–65.Google Scholar
  42. 42.
    Lu X, Williams JA, Deadman JJ et al. Preferential antagonism of the interactions of the integrin uni,133 with immobilized glycoprotein ligands by snake-venom RGD (Arg-Gly-Asp) proteins. Evidence supporting a functional role for the amino acid residues flanking the tripeptide RGD in determining the inhibitory properties of snake-venom RGD proteins. Biochem J 1994; 304: 929–36.PubMedGoogle Scholar
  43. 43.
    Rahman S, Lu X, Kakkar VV et al. The integrin u11433 contains distinct and interacting binding sites for the snake-venom RGD (Arg-Gly-Asp) proteins. Evidence that the receptor-binding characteristics of snake-venom RGD proteins are related to the amino acid environment flanking the sequence RGD. Biochem J 1995; 312: 223–32.PubMedGoogle Scholar
  44. 44.
    McLane MA, Kowalska MA, Silver L et al. Interaction of disintegrins with the anbII3 receptor on resting and activated human platelets. Biochem J 1994; 301: 429–36.PubMedGoogle Scholar
  45. 45.
    Saudek V, Atkinson RA, Pelton JT. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 1991; 30: 7369–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Wright PS, Saudek V, Owen TJ et al. An echistatin C-terminal peptide activates GPIIbIIIa binding to fibrinogen, fibronectin, vitronectin and collagen type I and type IV. Biochem J 1993; 293: 263–7.PubMedGoogle Scholar
  47. 47.
    Pfaff M, Tangemann K, Müller B et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by alh133, (43, and a5(31 integrins. J Biol Chem 1994; 269: 20233–8.PubMedGoogle Scholar
  48. 48.
    McLane MA, Vijay-Kumar S, Marcinkiewicz C et al. Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of anb133, and a513, integrins. FEBS Lett 1996; 391: 139–143.CrossRefPubMedGoogle Scholar
  49. 49.
    Calvete JJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/ IIIa complex. Thromb Haemost 1994; 72: 1–15.PubMedGoogle Scholar
  50. 50.
    Beer JH, Springer KT, Coller BS. Immobilized RGD (Arg-Gly-Asp) peptides of varying length as structural probes of the platelet glycoprotein IIb/IIIa receptor. Blood 1992; 79: 117–28.PubMedGoogle Scholar
  51. 51.
    Calvete JJ, McLane MA, Stewart GJ et al. Characterization of thecross-linking site of disintegrins albolabrin, bitistatin, echistatin, and eristostatin on isolated human platelet integrin GPIIb/IIIa. Biochem Biophys Res Commun 1994; 202: 135–40.CrossRefPubMedGoogle Scholar
  52. 52.
    Plow EF, D’Souza SE, Ginsberg MH. Ligand binding to GPIIb/IIIa: a status report. Sem Thromb Hemost 1992; 18: 324–32.CrossRefGoogle Scholar
  53. 53.
    Bajt ML, Loftus JC. Mutation of a ligand binding domain of [33 integrin. Integral role of oxygenated residues in arr,133 (GPIIb-IIIa) receptor function. J Biol Chem 1994; 269: 20913–9.PubMedGoogle Scholar
  54. 54.
    Calvete JJ. O the structure and function of platelet integrin aitr433, the fibrinogen receptor. Proc Soc Exp Biol Med 1995; 208: 346–60.PubMedGoogle Scholar
  55. 55.
    Takada Y, Ylanne J, Mandelman D et al. A point mutation of integrin ß, subunit blocks binding of a5131 to fibronectin and invasin but not recruitment to adhesion plaques. J Cell Biol 1992; 119: 913–21.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee J-O, Rieu P, Arnaout MA et al. Crystal structure of the A domain from the a subunit of integrin CR3 (CD1 lb/CD18). Cell 1995; 80: 631–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Bergelson JM, Hemler ME. Do integrins use a ‘MIDAS touch’ to grasp Asp? Curr Biol 1995; 5: 615–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang J-H, Pepinsky RB, Stehle T et al. The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-1-a4 integrin interaction. Proc Natl Acad Sci USA 1995; 92: 5714–8.CrossRefPubMedGoogle Scholar
  59. 59.
    De Fougerolles A, Springer TA. Ideas crystallized on immunoglobulin superfamilyintegrin interactions. Chem Biol 1995; 2: 639–43.CrossRefPubMedGoogle Scholar
  60. 60.
    Kini RM, Evans HJ. Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 1992; 30: 265–93.CrossRefPubMedGoogle Scholar
  61. 61.
    Tsai I-H, Wang Y-M, Lee Y-H. Characterization of a cDNA encoding the precursor of platelet aggregation inhibitor and metalloproteinase from Trimererurus mlucrosquamatus venom. Biochim Biophys Acta 1994; 1200: 337–40.CrossRefPubMedGoogle Scholar
  62. 62.
    Au L-C, Chou J-S, Chang K-J et al. Nucleotide sequenceof a full-length cDNA encoding a common precursor of platelet aggregation inhibitor and hemorrhagic protein from Calloselasma rhodostoma venom. Biochim Biophys Acta 1993; 1173: 243–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Bjarnason JB, Fox JW. Snake venom metalloendopeptidases: reprolysins. Meth Enzymol 1995; 248: 345–68.CrossRefPubMedGoogle Scholar
  64. 64.
    Fox JW, Bjarnason JB. Atrolysins: metalloproteinases from Crotalus atrox venom. Meth Enzymol 1995; 248: 368–87.CrossRefPubMedGoogle Scholar
  65. 65.
    Takeya H, Nishida S, Nishino N et al. Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. J Biochem 1993; 113: 473–83.PubMedGoogle Scholar
  66. 66.
    Takeya H, Nishida S, Miyata T et al. Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem 1992; 267: 14109–17.PubMedGoogle Scholar
  67. 67.
    Hite LA, Jia L-G, Bjarnason JB et al. cDNA sequences from four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Arch Biochem Biophys 1994; 308: 182–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Paine MJI, Desmond HP, Theakston RDG et al. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insight into the disintegrin gene family. J Biol Chem 1992; 267: 22869–76.PubMedGoogle Scholar
  69. 69.
    Paine MJI, Moura-Da-Silva AM, Theakston RDG et al. Cloning of metalloprotease genes in the carpet viper (Echis pyramidum leakeyi). Further members of the metalloprotease/ disintegrin gene family. Fur J Biochem 1994; 224: 483–8.Google Scholar
  70. 70.
    Zhou Q, Smith JB, Grossman MH. Molecular cloning and expression of catrocollastin, a snake-venom protein from Crotalus atrox (western diamond rattlesnake) which inhibits platetel adhesion to collagen. Biochem J 1995; 307: 411–7.PubMedGoogle Scholar
  71. 71.
    Nishida S, Fujita T, Kohno N et al. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry 1995; 34: 1771–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Stucker W, Grams F, Baumann U et aI. The metzincins-Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenascs) define a superfamily of zinc-peptidases. Protein Sci 1995; 4: 823–840.CrossRefGoogle Scholar
  73. 73.
    Gomis-Ruth OX, Kress LF, Bode W. First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. FMBO J 1993; 12: 4151–7.Google Scholar
  74. 74.
    Wolfsberg TG, Straight I’D, Gerena RL et al. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev Biol 1995; 169: 378–83.CrossRefPubMedGoogle Scholar
  75. 75.
    Wolfsberg TG, Primakoff P, Myles DC et al. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotentialGoogle Scholar
  76. 76.
    Blobel CP, Wolfsberg TG, Turck CW et al. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 1992; 356: 248–51.CrossRefPubMedGoogle Scholar
  77. 77.
    Perry AC, Jones R, Barker PJ et al. A mammalian epididymal protein with remarkable sequence similarity to snake venom hemorrhagic peptides. Biochem J 1992; 286: 671–5.PubMedGoogle Scholar
  78. 78.
    Perry AC, Barker HL, Jones R et al. Genetic evidence for an additional member of the metalloproteinase-like, disintegrin-like, cysteinerich (MDC) family of mammalian proteins and its abundant expression in the testis. Biochim Biophys Acta 1994; 1207: 134–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Ramarao CS, Myles DG, White JM et al. Initial evaluation of fertilin as an immunocontraceptive antigen and molecular cloning of the Cynomolgus monkey fertilin ß subunit. Mol Reprod Dev 1996; 43: 70–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Heinlein UAO, Wallat S, Senftleben A et aI. Male germ cell-expressed mouse gene TAZ83 encodes a putative, cysteine-rich transmembrane protein (cyritestin) sharing homologies with snake toxins and sperm-egg fusion proteins. Develop Growth Differ 1994; 36: 49–58.CrossRefGoogle Scholar
  81. 81.
    Perry ACF, Gichuhi PM, Jones R et al. Cloning and analysis of monkey fertilin reveals novel a subunit isoforms. Biochem J 1995; 307: 843–50.PubMedGoogle Scholar
  82. 82.
    Wolfsberg TG, Bazan JF, Blobel CP. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci USA 1993; 90: 10783–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Blobel CP, Myles DG, Primakoff P et al. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol 1990; 111: 69–78.CrossRefPubMedGoogle Scholar
  84. 84.
    Bronson RA, Fusi F. Evidence that an ArgGly-Asp adhesion sequence plays a role in mammalian fertilization. Biol Reprod 1990; 43: 1019–25.CrossRefPubMedGoogle Scholar
  85. 85.
    Fusi FM, Vignali M, Busacca M et al. Evidence for the presence of an integrin cell adhesion receptor on the oolemma of unfertilized human oocytes. Mol Reprod Dev 1992; 31: 215–22.CrossRefPubMedGoogle Scholar
  86. 86.
    Fusi FM, Vignali M, Gailit J et al. Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins. Mol Reprod Dev 1993; 36: 212–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Muga A, Neugebauer W, Hirama T et al. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 1994; 33: 4444–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Yagami-Hiromasa T, Sato T, Kurisaki T et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 1995; 377: 652–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Myles DG, Kimmel LH, Blobel CP et al. Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc Natl Acad Sci USA 1994; 91: 4195–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Bronson RA, Gailit J, Bronson S et al. Echistatin, a disintegrin, inhibits spermoolemmal adhesion but not oocyte penetration. Fertil Steril 1995; 64: 414–20.PubMedGoogle Scholar
  91. 91.
    Almeida EAC, Huovila A-PJ, Sutherland AE et al. Mouse egg integrin a6131 functions as a sperm receptor. Cell 1995; 81: 1095–104.CrossRefPubMedGoogle Scholar
  92. 92.
    Evans JP, Schultz RM, Kopf GS. Identification and localization of integrin subunits in oocytes and eggs of the mouse. Mol Reprod Dev 1995; 40: 211–20.CrossRefPubMedGoogle Scholar
  93. Smith KJ, Jaseja M, Lu X et al. Three-dimensional structure of the RGD-containing snake toxin albolabrin in solution, based on ‘H-NMR spectroscopy and simulated annealing calculations. Int J Peptide Protein Res 1996; 48: 220–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Juan J. Calvete

There are no affiliations available

Personalised recommendations