Binding Studies of Integrins with Their Respective Ligands

  • Kirsten Tangemann
  • Jürgen Engel

Abstract

In vitro investigations of interactions between isolated protein components offer the attractive feature that the system is characterized by a defined set of parameters. Binding data are therefore much easier to understand than data derived from assay systems with cells. In in vivo experiments in which the complexity of the system may be very large and difficult to oversee, often it is not possible to control parameters like pH, ion concentration or temperature.

Keywords

Surface Plasmon Resonance Sensor Chip Scatchard Plot Total Internal Reflection Fluorescence Microscopy Respective Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Felding-Habermann B, Ruggeri ZM, Cheresh DA. Distinct biological consequences of integrin aV(33-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J Biol Chem 1992; 267: 5070–5077.PubMedGoogle Scholar
  2. 2.
    Pfaff M, Aumailley M, Specks U et al. Integrin and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 1993; 206: 167–176.CrossRefPubMedGoogle Scholar
  3. 3.
    Yokosaki Y, Palmer EL, Prieto AL et al. The integrin a9ß1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 1994; 269: 26691–26696.PubMedGoogle Scholar
  4. 4.
    Schnapp LM, Hatch N, Ramos DM et al. The human integrin a8131 functions as a receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 1995; 270: 23196–23302.CrossRefPubMedGoogle Scholar
  5. 5.
    Danen EHJ, Aota S-I, van Kraats AA et al. Requirement of the synergy site for cell adhesion to fibronectin depends on the activation state of integrin a5ß1. J Biol Chem 1995; 270: 21612–21618.CrossRefPubMedGoogle Scholar
  6. 6.
    Pfaff M, Göhring W, Brown JC et al. Binding of purified collagen receptors (x1131, a2131) and RGD-dependent integrins to laminins and laminin fragments. Eur J Biochem 1994; 225: 975–984.CrossRefPubMedGoogle Scholar
  7. 7.
    Müller B, Zerwes H-G, Tangemann K et al. Two-step binding mechanism of fibrinogen to allb133 integrin reconstituted into planar lipid bilayers. J Biol Chem 1993; 268: 6800–6808.PubMedGoogle Scholar
  8. 8.
    Kern A, Eble J, Golbik R et al. Interaction of type IV collagen with the isolated integrins al131 and x2431. Eur J Biochem 1993; 215: 151–159.CrossRefPubMedGoogle Scholar
  9. 9.
    Pfaff M, Tangemann K, Müller B et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by edIbß3, aV133, and a5131 integrins. J Biol Chem 1994; 269: 20233–20238.PubMedGoogle Scholar
  10. 10.
    Orlando C, Cheresh DA. Arginine-Glycine-Aspartie acid binding leading to molecular stabilization between integrin aV133 and its ligand. J Biol Chem 1991; 266: 19543–19550.PubMedGoogle Scholar
  11. 11.
    BlAtechnology Handbook. June 1994 Pharmacia Biosensor AB, Uppsala, Sweden.Google Scholar
  12. 12.
    Van der Merwe PA, Barclay AN. Transient intercellular adhesion: the importance of weak protein-protein interactions. Trends Biochem Sci 1994; 19: 354–358.CrossRefPubMedGoogle Scholar
  13. 13.
    Van der Merwe PA, Barclay AN. Analysis of cell adhesion molecule interactions using surface plasmon resonance. Curt Opin Immun 1996; in press.Google Scholar
  14. 14.
    Phizicky EM, Fields S. Protein-protein interactions:methods for detection and analysis. Microbiol Rev 1995; 59: 94–123.PubMedGoogle Scholar
  15. 15.
    Huber W, Hurst J, Schlatter D et al. Determination of kinetic constants for the interaction between the platelet glycoprotein 1IbIIIa and fibrinogen by means of surface plasmon resonance. Eur J Biochem 1995; 227: 647–656.CrossRefPubMedGoogle Scholar
  16. 16.
    Sriramarao P, Steffner P, Gehlsen KR. Biochemical evidence for a homophilic interaction of the OM integrin. J Biol Chem 1993; 268: 22036–22041.PubMedGoogle Scholar
  17. 17.
    Hu DD, Hoyer JR, Smith JW. Ca’ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin uV133. J Biol Chem 1995; 270: 9917–9925.CrossRefPubMedGoogle Scholar
  18. 18.
    Kalb E, Engel J, Tamm L. Binding of proteins to specific target sites in membranes measured by total internal fluorescence microscopy. Biochem 1990; 29: 1607–1613.CrossRefGoogle Scholar
  19. 19.
    Horwitz A, Duggan K, Greggs R et al. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 1985; 101: 2131–2114.CrossRefGoogle Scholar
  20. 20.
    Buck CA, Shea E, Duggan K et al. Integrin (the CSAT antigen): functionality requires oligomcric integrity. J Cell Biol 1986; 103: 2121–2128.CrossRefGoogle Scholar
  21. 21.
    Yurchenko PD, Cheng Y-S. Self-assembly and calcium binding sites in laminin. J Biol Chem 1993; 268: 17286–17299.Google Scholar
  22. 22.
    Pytela R, Pierschbacher MD, Argraves S et al. Arginine-Glycine-Aspartic acid adhesion receptors. Methods Enzymol 1987; 144: 475–489.CrossRefPubMedGoogle Scholar
  23. 23.
    Schittny JC. Affinity retardation chromatography: characterization of the method and its application. Anal Biochem 1994; 222: 140–148.CrossRefPubMedGoogle Scholar
  24. 24.
    Calvete JJ, Rivas G, Schiffer W et al. Glycoprotein IIb peptide 656–667 mimics the fibrinogen y chain 402–411 binding site on platelet integrin GPIIb/Illa. FEBS Lettr 1993; 335: 132–135.CrossRefGoogle Scholar
  25. 25.
    Rivas G, Tangemann K, Minton AP et al. Binding of fibrinogen to platelet integrin edIbß3 in solution as monitored by tracer sedimentation equilibrium. J Mol Recog 1996; in press.Google Scholar
  26. 26.
    Rivas G, Ingham KC, Minton AP. Calcium-linked self association of human complement Cls. Biochem 1992; 11707–11712.Google Scholar
  27. 27.
    Klotz IM. Ligand-protein binding affinities. In: Creighton TE, ed. Protein Function A Practical Approach. Oxford: IRL Press; 1989: 25–54.Google Scholar
  28. 28.
    Rivas GA, Gonzalez-Rodriguez J. Calcium binding to human platelet integrin GPIIb/ Lila and to its constituent glycoproteins. Biochem J 1991; 276: 35–40.PubMedGoogle Scholar
  29. 29.
    Gulino D, Boudignon C, Zhang L et aI. Ca’’-binding properties of the platelet glycoprotein IIb ligand-interacting domain. J Biol Chem 1992; 267: 1001–1007.PubMedGoogle Scholar
  30. 30.
    Steiner B, Cousot D, Trzeciak et al. Ca’’-dependent binding of a synthetic Arg-GlyAsp (RGD) peptide to a single site on the purified platelet glycoprotein IIb-IIIa com- plex. J Biol Chem 1989; 264: 13102–13108.PubMedGoogle Scholar
  31. 31.
    Cierniewski CS, Haas TA, Smith JW et al. Characterization of cation-binding sequences in the platelet integrin GPIIb-IIIa (aIb[33) by terbium luminescence. Biochem 1994; 33: 12238–12246.CrossRefGoogle Scholar
  32. 32.
    Gonzalez-Rodriguez J, Acuna AU, Alvarez MV et al. Rotational mobility of the fibrinogen receptor glycoprotein IIb/IIIa or integrin uIIb(33 in the plasma membrane of human platelets. Biochem 1994; 33: 266–274.CrossRefGoogle Scholar
  33. 33.
    Weisel JW, Nagaswami C, Vilaire G et al. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem 1992; 16637–16643.Google Scholar
  34. 34.
    Engel J, Schalch W. Antibody binding constants from farr test and other radioimmunoassays. A theoretical and experimental analysis. Mol Immun 1980; 17: 675–680.CrossRefGoogle Scholar
  35. 35.
    Connors KA. Binding constants. In: Binding Constants. 1st ed. New York: John Wiley and Sons, 1987: 21–101.Google Scholar
  36. 36.
    Klotz IM, Hunston DL. Properties of graphical representations of multiple classes of binding sites. Biochem 1971; 10: 3065–3069.CrossRefGoogle Scholar
  37. 37.
    Rosenthal HE. A graphical method for the determination and presentation of binding parameters in a complex system. Anal Biochem 1967; 20: 525–532.CrossRefPubMedGoogle Scholar
  38. 38.
    Klotz IM. Number of receptor sites from Scatchard graphs: facts and fantasies. Science 1982; 217: 1247–1249.CrossRefPubMedGoogle Scholar
  39. 39.
    Klotz IM. Ligand-receptor interactions: facts and fantasies. Quart Rev Biophys 1985; 18: 227–259.CrossRefGoogle Scholar
  40. 40.
    Tschopp J, Villiger W, Lustig A et al. Antigen-independent binding of IgG dimers to Clq as studied by sedimentation equilibrium, complement fixation and electron microscopy. Eur J Immunol 1980; 10: 529–535.CrossRefPubMedGoogle Scholar
  41. 41.
    Roitt I, Brostoff J, Male D. Antigen recognition. In: Immunology. 3rd ed. London: Mosby 1993: 6. 3.Google Scholar
  42. 42.
    Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992; 69: 11–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morpho-genesis. Cell 1996; 84: 345–357.CrossRefPubMedGoogle Scholar
  44. 44.
    Johnson ML. Why, when, and how biochemists should use least squares. Anal Biochem 1992; 206: 215–225.CrossRefGoogle Scholar
  45. 45.
    Kirschbaum NE, Mosesson MW, Amrani DL. Characterization of the y chain platelet binding site on fibrinogen fragment D. Blood 1992; 79: 2643–2648.PubMedGoogle Scholar
  46. 46.
    Legrand C, Dubernard V, Nurden AT. Characteristics of collagen-induced fibrinogen binding to human platelets. Biochim Biophys Acta 1985; 812: 802–810.CrossRefPubMedGoogle Scholar
  47. 47.
    Marguerie GA, Egington TS, Plow EF. Interaction of fibrinogen with ist platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 1980; 255: 154–161.PubMedGoogle Scholar
  48. 48.
    Phillips DA, Baughan AK. Fibrinogen binding to human platelet plasma membranes. Identification of two steps requiring divalent cations. J Biol Chem 1983; 258: 10240–10246.PubMedGoogle Scholar
  49. 49.
    Parise LV, Phillips DR. Reconstitution of the purified platelet fibrinogen receptor-fibrinogen binding properties of the glycoprotein IIb-IIIa complex. J Biol Chem 1985; 260: 10698–10707.PubMedGoogle Scholar
  50. 50.
    Charo IF, Nannizzi L, Phillips DR et al. Inhibition of fibrinogen binding topeptide. J Biol Chem 1991; 266: 1415–1421.PubMedGoogle Scholar
  51. 51.
    Nachman RL, Leung LKL, Kloczewiak M et al. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen D domain. J Biol Chem 1984; 259: 8584–8588.PubMedGoogle Scholar
  52. 52.
    Frelinger ALIII, Lam SC-T, Plow EF et al. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263: 12397–12402.PubMedGoogle Scholar
  53. 53.
    Ugarova TP, Budzynski AZ, Shattil SJ et al. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem 1993; 268: 21080–21087.PubMedGoogle Scholar
  54. 54.
    Ugarova TP, Zamarron C, Veklich Y et al. Conformational transitions in the cell binding domain of fibronectin. Biochem 1995; 34: 4457–4466.CrossRefGoogle Scholar
  55. 55.
    Underwood PA, Steele JG, Dalton BA. Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J Cell Sci 1993; 104: 793–803.PubMedGoogle Scholar
  56. 56.
    Ginsberg MH, Xiaoping D, O’Toole TEO, Loftus JC et al. Platelet integrins. Thromb Haemost 1993; 70: 87–93.PubMedGoogle Scholar
  57. 57.
    Frelinger AL, Cohen I, Plow EF et al. Selective inhibition of integrin function by antibodies specific for ligand-ocupied receptor conformers. J Biol Chem 1990; 265: 6346–6352.PubMedGoogle Scholar
  58. 58.
    Frelinger AL, Du X, Plow EF et al. Monoclonal antibodies to ligand-occupied conformers of integrin a1lb(33 (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J Biol Chem 1991; 266: 17106–17111.PubMedGoogle Scholar
  59. 59.
    Kirchhofer D, Grzesiak J, Pierschbacher MD. Calcium as a potential physiological regulator of integrin-mediated cell adhesion. J Biol Chem 1991; 266: 4471–4477.PubMedGoogle Scholar
  60. 60.
    Mould AP, Akiyama SK, Ilumphries MJ. Regulation of integrin a5ß1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mil’ •, Mg’’, and Ca’’. J Biel Chem 1995; 270: 26270–26277.CrossRefGoogle Scholar
  61. 61.
    Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.CrossRefPubMedGoogle Scholar
  62. 62.
    Brown E, Hooper L, Ho T et al. Integrinassociated protein: a 50-kDa plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111: 2785–2794.CrossRefPubMedGoogle Scholar
  63. 63.
    Tangemann K, Engel J. Demonstration of nonlinear detection in ELISA resulting in up to 1000-fold too high affinities of fibrinogen binding to integrin aIlb133. FEBS Letter 1995; 358: 179–1811.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Kirsten Tangemann
  • Jürgen Engel

There are no affiliations available

Personalised recommendations