Integrins—A Versatile and Old Family of Cell Adhesion Molecules

  • Johannes A. Eble


In multicellular organisms, cell-cell contacts within a tissue as well as contacts between cells and the extracellular matrix, which scaffolds the tissue, are indispensably required for the physiological function of the tissue and its development. These cell-cell and cell-matrix interactions are mediated by cell surface proteins, termed cell adhesion molecules (CAMs). Different groups of CAMs have been discovered,1 among which are integrins,2–4 immunoglobulin-cell adhesion molecules (IgCAMs),5 cadherins,6–8 selectins,9,10 CD44-related molecules11 and transmembrane proteoglycans.12 The most numerous and most versatile group of CAMs are integrins. The name “integrin” was first coined by Tamkun et al,13 who described an integral transmembrane protein linking the extracellular matrix with the intracellular cytoskeleton. Soon it became clear that integrins not only serve this architectural function as anchoring molecules, but also play a role as receptors for extracellular matrix proteins, which transduce signals from the environment into the cell and trigger various cellular behaviors, such as cell spreading, migration and anchorage-dependent growth.4 In the opposite way, called inside-out signaling, the cell is also able to regulate the binding affinity of the integrin for its extracellular ligand. By binding and dragging the bound ligand along the cell surface, integrins enable the cell to change its environment.14


Cytoplasmic Domain Repeat Domain Integrin Subunit Focal Contact Vitronectin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990; 4: 2868–2880.PubMedGoogle Scholar
  2. 2.
    Hynes RO. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554.PubMedCrossRefGoogle Scholar
  3. 3.
    Akiyama SK, Nagat K, Yamada KM. Cell surface receptors for extracellular matrix components. Biochim Biophys Acta 1990; 1031: 91–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Hynes RO. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 1992; 69: 11–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams AF, Barclay AN. The immunoglobulin superfamily—domains for cell surface recognition. Ann Rev Immunol 1988; 6: 381–405.CrossRefGoogle Scholar
  6. 6.
    Takeichi M. Cadherin cell adhesion receptors as a morphogenic regulator. Science 1991; 251: 1451–1455.PubMedCrossRefGoogle Scholar
  7. 7.
    Geiger B, Ayalon O. Cadherins. Ann Rev Cell Biol 1992; 8: 307–332.PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro L, Fannon AM, Kwong PD et al. Structural basis of cell-cell adhesion by cadherins. Nature 1995; 374: 327–337.PubMedCrossRefGoogle Scholar
  9. 9.
    Lasky LA. Lectin cell adhesion molecules (LEC-CAM): a new family of cell adhesion proteins involved with inflammation. J Cell Biochem 1991; 45: 139–146.PubMedCrossRefGoogle Scholar
  10. 10.
    Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 1992; 258: 964–969.PubMedCrossRefGoogle Scholar
  11. 11.
    Herrlich P, Zöller M, Pals ST et al. CD44 splice variants: metastases meets lymphocytes. Immunology Today 1993; 14: 395–399.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernfield M, Kokenyesi R, Kato M et al. Biology of the syndecans: a family of trans-membrane sulfate proteoglycans. Ann Rev Cell Biol 1992; 8: 365–393.PubMedCrossRefGoogle Scholar
  13. 13.
    Tamkun JW, DeSimone DW, Fonda D et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 1986; 46: 271–282.PubMedCrossRefGoogle Scholar
  14. 14.
    Akiyama SK, Yamada SS, Chen W-T et al. Analysis of fibronectin receptor with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organisation. J Cell Biol 1989; 109: 863–875.PubMedCrossRefGoogle Scholar
  15. 15.
    Hemler ME, Huang C, Schwarz L. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight 13 subunit. J Biol Chem 1987; 262: 3300–3309.PubMedGoogle Scholar
  16. 16.
    Takada Y, Strominger JL, Hemler ME. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc Natl Acad Sci USA 1987; 84: 3239–3243.PubMedCrossRefGoogle Scholar
  17. 17.
    Hemler ME. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Ann Rev Immunol 1990; 8: 365–400.CrossRefGoogle Scholar
  18. 18.
    Kishimoto TK, O’Connor K, Lee A et al. Cloning of the 13-subunit of the leukocyte adhesion proteins: homology to the extra-cellular matrix receptor defines a novel supergene family. Cell 1987; 48: 681–690.PubMedCrossRefGoogle Scholar
  19. 19.
    Larson RS, Springer TA. Structure and function of leukocyte integrins. Immunol Reviews 1990; 114: 181–217.CrossRefGoogle Scholar
  20. 20.
    Ginsberg MH, Loftus JC, Plow EF. Cytoadhesins, integrins, and platelets. Thromb Haemos 1988; 59: 1–6.Google Scholar
  21. 21.
    Carrell NA, Fitzgerald LA, Steiner B et al. Structure of human platelet membrane glycoprotein IIb and IIIa as determined by electron microscopy. J Biol Chem 1985; 260: 1743–1749.PubMedGoogle Scholar
  22. 22.
    Parise LV, Phillips DR. Platelet membrane glycoprotein IIb-IIIa complex incorporated into phospholipid vesicles; preparation and morphology. J Biol Chem 1985; 260: 1750–1756.PubMedGoogle Scholar
  23. 23.
    Kelly T, Molony L, Burridge K. Purification of two smooth muscle glycoproteins related to integrins. Distribution in cultured chicken embryo fibroblasts. J Biol Chem 1987; 262: 17189–17199.PubMedGoogle Scholar
  24. 24.
    Nermut MV, Green NM, Eason P et al. Electron microscopy and structural model of human fibronectin receptor. EMBO J 1988; 7: 4093–4099.Google Scholar
  25. 25.
    Rocco M, Spotorno B, Hantgan RR. Modelling the auh13 integrin solution conformation. Protein Sci 1993; 2: 2154–2166.PubMedCrossRefGoogle Scholar
  26. 26.
    Springer TA, Teplow DB, Drezer WJ. Sequence homology of the LFA-1 and Mac-1 leukocyte adhesion glycoprotein and unexpected relation to leukocyte interferon. Nature 1985; 314: 540–542.PubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki S, Argraves WS, Pytela R et al. cDNA and amino acid sequence of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc Natl Acad Sci USA 1986; 83: 8614–8618.PubMedCrossRefGoogle Scholar
  28. 28.
    Charo IF, Fitzgerald LA, Steiner B et al. Platelet glycoproteins IIb and IIIa: evidence for a family of immunologically and structurally related glycoproteins in mammalian cells. Proc Natl Acad Sci USA 1986; 83: 8351–8355.PubMedCrossRefGoogle Scholar
  29. 29.
    Argraves WS, Suzuki S, Arai H et al. Amino acid sequence of the human fibronectin receptor. J Cell Biol 1987; 105: 1183–1190.PubMedCrossRefGoogle Scholar
  30. 30.
    Law SKA, Gagnon J, Hildreth JEK et al. The primary structure of the 13-subunit of the cell surface adhesion glycoproteins LFA-1, CR-3 and p150,95 and its relationship to the fibronectin receptor. EMBO J 1987; 4: 915–919.Google Scholar
  31. 31.
    Fitzgerald LA, Steiner B, Rall Jr SC et al. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone; identity with platelet glycoprotein IIIa and similarity to “integrin.” J Biol Chem 1987; 262: 3936–3939.PubMedGoogle Scholar
  32. 32.
    Ignatius MJ, Large TH, Houde M et al. Molecular cloning of the rat integrin ai-subunit: a receptor for laminin and collagen. J Cell Biol 1990; 111: 709–720.PubMedCrossRefGoogle Scholar
  33. 33.
    Tuckwell DS, Humphries MJ, Brass A. A secondary structure model of the integrin a subunit N-terminal domain based on analysis of multiple alignments. Cell Adhes Commun 1994; 2: 385–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Corbi AL, Garcia-Aguilar J, Springer TA. Genomic structure of an integrin a subunit, the leukocyte p150,95 molecule. J Biol Chem 1990; 265: 2782–2788.PubMedGoogle Scholar
  35. 35.
    Corbi AL, Miller LJ, O’Connor K et al. cDNA cloning and complete primary structure of the a subunit of a leukocyte adhesion glycoprotein p150,95. EMBO J 1987; 6: 4023–4028.PubMedGoogle Scholar
  36. 36.
    Kretsinger RH. Calcium-binding proteins. Ann Rev Biochem 1976; 45: 239–266.PubMedCrossRefGoogle Scholar
  37. 37.
    Tuckwell DS, Brass A, Humphries MJ. Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Biochem J 1992; 285: 325–331.PubMedGoogle Scholar
  38. 38.
    Masumoto A, Hemler ME. Mutation of putative divalent cation sites in the cc/ subunit of the integrin VLA-4. Distinct effects on adhesion to CSI-fibronectin, VCAM-1, and invasin. J Cell Biol 1993; 123: 245–253.PubMedCrossRefGoogle Scholar
  39. 39.
    Kirchhofer D, Grzesiak J, Pierschbacher MD. Calcium as potential physiological regulator of integrin-mediated cell adhesion. J Biol Chem 1991; 266: 4471–4477.PubMedGoogle Scholar
  40. 40.
    Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem 1988; 263: 12927–12932.PubMedGoogle Scholar
  41. 41.
    Kirchhofer D, Gailit J, Ruoslahti E et al. Cation-dependent changes in the binding specificity of the platelet receptor GPIIbIIIa. J Biol Chem 1990; 265: 18525–185. 30.Google Scholar
  42. 42.
    Mould AP, Akiyama SK, Humphries MJ. Regulation of the a5131-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mil’’, Mg’-’, and Cali. J Biol Chem 1995; 270: 26270–26277.PubMedCrossRefGoogle Scholar
  43. 43.
    Larson RS, Corbi AL, Berman L et al. Primary structure of the leukocyte function associated molecule-1 a subunit: an integrin with embedded domain defining a protein superfamily. J Cell Biol 1989; 108: 703–712.PubMedCrossRefGoogle Scholar
  44. 44.
    Colombatti A, Bonaldo P. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 1991; 77: 2305–2315.PubMedGoogle Scholar
  45. 45.
    Landis RC, Bennett RI, Hogg N. A novel LFA-1 activation epitope maps to the I-domain. J Cell Biol 1993; 120: 1519–1527.PubMedCrossRefGoogle Scholar
  46. 46.
    Landis RC, McDowall A, Holness CLL et al. Involvement of the “I” domain of LFA-1 in selective binding to ligands ICAM-1 and ICAM-3. J Cell Biol 1994; 126: 529–537.PubMedCrossRefGoogle Scholar
  47. 47.
    Kern A, Briesewitz R, Bank I et al. The role of the I-domain in ligand binding of the human alp/. J Biol Chem 1994; 269: 22811–22816.PubMedGoogle Scholar
  48. 48.
    Kamata T, Puzon W, Takada Y. Identification of putative ligand binding sites within I domain of integrin a2131 (VLA-2, CD 49b/ CD29). J Biol Chem 1994; 269: 9659–9663.PubMedGoogle Scholar
  49. 49.
    Kamata T, Takada Y. Direct binding of collagen to the I-domain of integrin a,f3i (VLA-2, CD49b/CD29) in a divalent cation-independent manner. J Biol Chem 1994; 269: 26006–26010.PubMedGoogle Scholar
  50. 50.
    Edwards CP, Champe M, Gonzalez T et al. Identification of amino acids in the CD1 la I-domain important for binding of the leukocyte function associated antigen-1 (LFA-1) to the intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 1995; 270: 12635–12640.PubMedCrossRefGoogle Scholar
  51. 51.
    Kamata T, Wright R, Takada Y. Critical threonine and aspartate residues within the I-domains of ß2 integrins for interactions with intercellular adhesion molecule 1 (ICAM-1) and C3Bi. J Biol Chem 1995; 270: 12531–12535.PubMedCrossRefGoogle Scholar
  52. 52.
    Huang C, Springer TA. A binding interface on the I-domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J Biol Chem 1995; 270: 19008–19016.PubMedCrossRefGoogle Scholar
  53. 53.
    Michishita M, Videm V, Arnaout MA. A novel divalent cation-binding site in the A-domain of the 12 integrin CR3 (CD11b/ CD18) is essential for ligand binding. Cell 1993; 73: 857–867.CrossRefGoogle Scholar
  54. 54.
    Lee J-O, Rieu P, Arnaout MA et al. Crystal structure of the A-domain from the a subunit of integrin CR3 (CD11b/CD18). Cell 1995; 80: 631–638.PubMedCrossRefGoogle Scholar
  55. 55.
    Delwel GO, Sonnenberg A. Laminin isoforms and their integrin receptors. In: Horton MA, ed. Adhesion Receptors as Therapeutic Targets. CRC Press 1996: 9–36.Google Scholar
  56. 56.
    Delwel GO, Kuikman I, Sonnenberg A. An alternatively spliced exon in the extracellular domain of the human a6 integrin subunit-functional analysis of the a6 integrin variants. Cell Adhes Commun 1995; 3: 143–161.PubMedCrossRefGoogle Scholar
  57. 57.
    Ziober BL, Vu MP, Waleh N et al. Alternative extracellular and cytoplasmic domains of a7 subunit are differentially expressed during development. J Biol Chem 1993; 268: 26773–26783.PubMedGoogle Scholar
  58. 58.
    Miller LJ, Springer TA. Biosynthesis and glycosylation of p150,95 and related leukocyte adhesion proteins. J Immunol 1987; 139: 842–847.PubMedGoogle Scholar
  59. 59.
    Calvete JJ, Henschen A, Gonzalez-Rodriguez. Complete localization of the intrachain disulphide bonds and the N-glycosylation points in the a-subunit of human platelet glycoprotein IIb. Biochem J 1989; 261: 561–568.PubMedGoogle Scholar
  60. 60.
    Syfrig J, Mann K, Paulsson M. An abundant chick gizzard integrin is an avian aißl integrin heterodimer and functions as a divalent cation-dependent collagen IV receptor. Exp Cell Res 1991; 194: 195–173.CrossRefGoogle Scholar
  61. 61.
    Dahms NM, Hart GW. Lymphocyte function-associated antigen 1 (LFA-1) contains sulfated N-linked oligosaccharides. J Immunol 1985; 134: 3978–3986.PubMedGoogle Scholar
  62. 62.
    Bennett JS, Kolodziej MA, Vilaire G et al. Determinants of the intracellular fate of truncated forms of the platelet glycoproteins IIb and IIIa. J Biol Chem 1993; 268: 3580–3585.PubMedGoogle Scholar
  63. 63.
    Polack B, Duperray A, Troesch A et al. Biogenesis of the vitronectin receptor in human endothelial cell: evidence that the vitronectin receptor and the GPIIb-IIIa are synthesized by a common mechanism. Blood 1989; 73: 1519–1524.PubMedGoogle Scholar
  64. 64.
    Troesch A, Duperray A, Polack B et al. Comparative study of the glycosylation of platelet glycoprotein GPIIb/IIIa and the vitronectin receptor. Biochem J 1990; 268: 129–133.PubMedGoogle Scholar
  65. 65.
    Fleming JC, Pahl HK, Gonzalez DA et al. Structural analysis of the CD11b gene and phylogenetic analysis of the a-integrin gene family demonstrate remarkable conservation of genomic organization and suggest early diversification during evolution. J Immunol 1993; 150: 480–490.PubMedGoogle Scholar
  66. 66.
    Takada Y, Elices MJ, Crouse C et al. The primary structure of the a` subunit of VLA4: homology to other integrins and a possible cell-cell adhesion function. EMBO J 1989; 8: 1361–1368.PubMedGoogle Scholar
  67. 67.
    Shaw SK, Cepek KL, Murphy EA et al. Molecular cloning of the human mucosal lymphocyte integrin ar subunit. Unusual structure and restricted distribution. J Biol Chem 1994; 269: 6016–6025.PubMedGoogle Scholar
  68. 68.
    Dana N, Fathallah DM, Arnaout MA. Expression of a soluble and functional form of the human Rz integrin CD1 l b/CD18. Proc Natl Acad Sci USA 1991; 88: 3106–3110.PubMedCrossRefGoogle Scholar
  69. 69.
    Briesewitz R, Epstein MR, Marcantonio EE. Expression of native and truncated forms of the human integrin ai subunit. J Biol Chem 1993; 268: 2989–2996.PubMedGoogle Scholar
  70. 70.
    Briesewitz R, Kern A, Marcantonio EE. Assembly and function of integrin receptors is dependent on opposing a and 13 cytoplasmic domains. Mol Biol Cell 1995; 6: 997–1010.PubMedGoogle Scholar
  71. 71.
    Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signalling. Curr Opin Cell Biol 1993; 5: 819–831.PubMedCrossRefGoogle Scholar
  72. 72.
    Briesewitz R, Kern A, Marcantonio EE. Ligand-dependent and -independent integrin focal contact localization. The role of the a chain cytoplasmic domain. Mol Biol Cell 1993; 4: 593–604.PubMedGoogle Scholar
  73. 73.
    Chan BMC, Kassner PD, Schiro JA et al. Distinct cellular functions mediated by different VLA integrin a subunit cytoplasmic domains. Cell 1992; 68: 1051–1060.PubMedCrossRefGoogle Scholar
  74. 74.
    Kawaguchi S, Bergelson JM, Finberg RW et al. Integrin a, cytoplasmic domain deletion effects: loss of adhesive activity parallels ligand-independent recruitment into focal contact. Mol Biol Cell 1994; 5: 977–988.PubMedGoogle Scholar
  75. 75.
    Kassner PD, Hemler ME. Interchangeable a chain cytoplasmic domains play a positive role in control of cell adhesion mediated by VLA-4, a 13i integrin. J Exp Med 1993; 178: 649–660.PubMedCrossRefGoogle Scholar
  76. 76.
    Kassner PD, Alon R, Springer TA et al. Specialized functional properties of the integrin a4 cytoplasmic domain. Mol Biol Cell 1995; 6: 661–674.PubMedGoogle Scholar
  77. 77.
    Kassner PD, Kawaguchi S, Hemler ME. Minimum a chain cytoplasmic tail sequence needed to support integrin-mediated adhesion. J Biol Chem 1994; 269: 19859–19867.PubMedGoogle Scholar
  78. 78.
    Kawaguchi S, Hemler ME. Role of the a subunit cytoplasmic domain in regulation of adhesive activity mediated by the integrin VLA-2. J Biol Chem 1993; 268: 16279–16285.PubMedGoogle Scholar
  79. 79.
    Tamura RN, Cooper HM, Collo G et al. Cell type specific integrin variants with alternative a chain cytoplasmic domains. Proc Natl Acad Sci USA 1991; 88: 10183–10197.PubMedCrossRefGoogle Scholar
  80. 80.
    Song WK, Wang W, Sato H et al. Expression of a7 integrin cytoplasmic domains during skeletal development: alternative forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J Cell Sci 1993; 106: 1139–1152.PubMedGoogle Scholar
  81. 81.
    Hogervorst F, Admiraal LG, Niessen C et al. Biochemical characterization and tissue distribution of the A and B variants of the integrin a6 subunit. J Cell Biol 1993; 121: 179–191.PubMedCrossRefGoogle Scholar
  82. 82.
    Hierck BP, Thorsteinsdôttir S, Niessen CM et al. Variants of the a6131 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin a6 subunit. Cell Adhes Commun 1993; 1: 33–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Shaw LM, Mercurio AM. Regulation of cellular interactions with laminin by integrin cytoplasmic domains: The A and B structural variants of the a6f31 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages. Mol Biol Cell 1994; 5: 679–690.PubMedGoogle Scholar
  84. 84.
    Shaw LM, Turner CE, Mercurio AM. The a6Aßi and a6B31 integrin variants signal differences in the tyrosine phosphorylation of paxillin and other proteins. J Biol Chem 1995; 270: 23648–23652.PubMedCrossRefGoogle Scholar
  85. 85.
    Rojiani MV, Finlay BB, Gray V et al. In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen ( Calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin a subunits. Biochem 1986; 30: 8357–8361.Google Scholar
  86. 86.
    Burns K, Atkinson EA, Bleackley RC et al. Calreticulin: from Cat binding to control of gene expression. Trends Cell Biol 1994; 4: 152–154.PubMedCrossRefGoogle Scholar
  87. 87.
    Coppolino M, Leung-Hagesteijn C, Dedhar S et al. Inducible interaction of integrin aJ31 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem 1995; 270: 23132–23138.PubMedCrossRefGoogle Scholar
  88. 88.
    Williams MJ, Hughes PE, O’Toole TE et al. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol 1994; 4: 109–112.PubMedCrossRefGoogle Scholar
  89. 89.
    Hughes PE, Diaz-Gonzalez F, Leong L et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271: 6571–6574.PubMedCrossRefGoogle Scholar
  90. 90.
    Collo G, Starr L, Quaranta V. A new isoform of the laminin receptor integrin a7131 is developmentally regulated in skeletal muscle. J Biol Chem 1993; 268: 19019–19024.PubMedGoogle Scholar
  91. 91.
    Rosa JP, Bray PF, Gazet O, Johnston GI et al. Cloning of glycoprotrin IIIa cDNA from human erythroleukemia cells and localization of the gene to chromosome 17. Blood 1988; 72: 593–600.PubMedGoogle Scholar
  92. 92.
    Hemler ME, Crouse C, Sonnenberg A. Association of the VLA a6 subunit with a novel protein. A possible alternative to the common VLA ß1 subunit on certain cell lines. J Biol Chem 1989; 264: 6529–6535.PubMedGoogle Scholar
  93. 93.
    Sonnenberg A, Calafat J, Janssen H et al. Integrin a6/134 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 1991; 113: 907–917.PubMedCrossRefGoogle Scholar
  94. 94.
    Ramaswamy H, Hemler ME. Cloning, primary structure and properties of a novel human integrin 13 subunit. EMBO J 1990; 9: 1561–1568.PubMedGoogle Scholar
  95. 95.
    McLean JW, Vestal DJ, Cheresh DA et al. cDNA sequence of the human integrin 135 subunit. J Biol Chem 1990; 265: 17126–17131.PubMedGoogle Scholar
  96. 96.
    Sheppard D, Rozzo C, Starr L et al. Complete amino acid sequence of a novel integrin ß subunit (f36) identified in epithelial cells using the polymerase chain reaction. J Biol Chem 1990; 265: 11502–11507.PubMedGoogle Scholar
  97. 97.
    Busk M, Pytela R, Sheppard D. Characterization of the integrin av136 as a fibronectinbinding protein. J Biol Chem 1992; 267: 5790–5796.PubMedGoogle Scholar
  98. 98.
    Moyle M, Napier MA, McLean JW. Cloning and expression of a divergent integrin subunit ßs. J Biol Chem 1991; 266: 19650–19658.PubMedGoogle Scholar
  99. 99.
    Nishimura SL, Sheppard D, Pytela R. Integrin av(38. Interaction with vitronectin and functional divergence of the (3H cytoplasmic domain. J Biol Chem 1994; 269: 28708–28715.PubMedGoogle Scholar
  100. 100.
    Erle DJ, Rüegg C, Speppard D et al. Complete amino acid sequence of an integrin (3 subunit (137) identified in leukocytes. J Biol Chem 1991; 266: 11009–11016.PubMedGoogle Scholar
  101. 101.
    Chan BMC, Elices MJ, Murphy E et al. Adhesion to vascular cell adhesion molecule 1 and fibronectin. Comparison of aE13, (VLA4) and a’0, on the human B cell line JY. J Biol Chem 1992; 267: 8366–8370.PubMedGoogle Scholar
  102. 102.
    Takada Y, Ylänne J, Mandelman D et al. A point mutation of the Integrin 01 subunit blocks binding of a5131 to fibronectin and invasin but not recruitment to adhesion plaques. J Biol Chem 1992; 119: 913–921.Google Scholar
  103. 103.
    Bajt ML, Goodman T, McGuire SL. 0, (CD18) mutations abolish ligand recognition by I domain integrins LFA-I (a10,, CD11a/CD18) and Mac-1 (u 132, CD11b/ CD18). J Biol Chem 1995; 270: 94–98.PubMedCrossRefGoogle Scholar
  104. 104.
    Loftus JC, O’Toole TE, Plow EF et al. A 0, integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249: 915–918.PubMedCrossRefGoogle Scholar
  105. 105.
    Bajt ML, Loftus JC. Mutation of a ligand binding domain of 0, integrin. Integral role of oxygenated residues in a11L J33 (GPIIb-IIIa) receptor function. J Biol Chem 1994; 269: 20913–20919.PubMedGoogle Scholar
  106. 106.
    Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990; 75: 1037–1050.PubMedGoogle Scholar
  107. 107.
    D’Souza SE, Ginsberg MH, Burke TA et al. Localization of an arg-gly-asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91–93.PubMedCrossRefGoogle Scholar
  108. 108.
    Lasz E. McLane MA, Trybulec M et al. 0, integrin derived peptide 217–230 inhibits fibrinogen binding and platelet aggregation: significance of RGD sequences and fibrinogen Au-chain. Biochem Biophys Res Comm 1993; 190: 118–124.PubMedCrossRefGoogle Scholar
  109. 109.
    Arnaout MA, Dana N, Gupta SK et al. Point mutation impairing cell surface expression of the common 0 subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest 1990; 85: 977–981.PubMedCrossRefGoogle Scholar
  110. 110.
    Weitzman JB, Wells CE, Wright AH et al. The gene organisation of the human 02 integrin subunit (CD18). FEBS Lett 1991; 294: 97–103.PubMedCrossRefGoogle Scholar
  111. 111.
    Calvete JJ, Alvarez MV, Rivas G et al. Interchain and intrachain disulfide bonds in human platelet glycoprotein IIb. Biochem J 1989; 261: 551–560.PubMedGoogle Scholar
  112. 112.
    Bray PF, Leung CS-I, Schuman MA. Human platelets and megakaryocytes contain alternatively spliced glycoprotein 1Ib mRNA. J Biol Chem 1990; 265: 9587–9590.PubMedGoogle Scholar
  113. 113.
    Dahms NM, Hart GW. Influence of quarternary structure on glycosylation. Differential subunit association affects the site-specific glycosylation of the common 0-chain from Mac-1 and LEA-1. J Biol Chem 1986; 261: 13186–13196.PubMedGoogle Scholar
  114. 114.
    Altruda F, Cervella P, Tarone G et al. A human integrin Bi subunit with a unique domain generated by alternative mRNA processing. Gene 1990; 95: 261–266.PubMedCrossRefGoogle Scholar
  115. 115.
    Languino LR, Ruoslahti E. An alternative form of the integrin Bi subunit with a variant cytoplasmic domain. J Biol Chem 1992; 267: 7116–7120.PubMedGoogle Scholar
  116. 116.
    Belkin AM, Zhidkova NI, Balzac F et al. [31D integrin displaces the 01A isoform in striated muscles: Localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol 1996; 132: 21 1–226.Google Scholar
  117. 117.
    Van Kuppevelt THMSM, Languino LR, Gailit JO et al. An alternative cytoplasmic domain of the integrin 0, subunit. Proc Nat1 Acad Sci USA 1989; 86: 5415–5418.CrossRefGoogle Scholar
  118. 118.
    Tamura RN, Rozzo C, Starr L et al. Epithelial integrin a613.: Complete primary structure of a~ and variant forms of 0,. J Cell Biol 1990; 111: 1593–1604.PubMedCrossRefGoogle Scholar
  119. 119.
    Otey CA, Pavalko FM, Burridge K. An interaction between a-actinin and the Bi integrin subunit in vitro. J Cell Biol 1990; 111: 721–729.PubMedCrossRefGoogle Scholar
  120. 120.
    Otey CA, Vasquez GB, Burridge K et al. Mapping of the a-actinin binding site within the Bi integrin cytoplasmic domain. J Biol Chem 1993; 268: 21193–21197.PubMedGoogle Scholar
  121. 121.
    Pavalko FM, LaRoche SM. Activation of human neutrophils induces an interaction between the integrin 0,-subunit (CD18) and the actin binding protein a-actinin. J Immunol 1993; 151: 3795–3807.PubMedGoogle Scholar
  122. 122.
    Horwitz A, Duggan K, Buck C et al. Interaction of plasma membrane fibronectin receptor with talin a transmembrane link- age. Nature 1986; 320: 531–533.PubMedCrossRefGoogle Scholar
  123. 123.
    Smilenov L, Briesewitz R, Marcantonio EE. Integrin f3 cytoplasmic domain dominant negative effects revealed by lysophosphatidic acid treatment. Mol Biol Cell 1994; 5: 1215–1223.PubMedGoogle Scholar
  124. 124.
    Solowska J, Edelmann JM, Albelda SM et al. Cytoplasmic and transmembrane domain of integrin 131 and 33 subunits are functionally interchangeable. J Cell Biol 1991; 114: 1079–1088.PubMedCrossRefGoogle Scholar
  125. 125.
    Burridge K, Fath K, Kelly T et al. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell Biol 1988; 4: 487–525.PubMedCrossRefGoogle Scholar
  126. 126.
    Luna EL, Hitt AL. Cytoskeleton-plasma membrane interactions. Science 1992; 258: 955–963.PubMedCrossRefGoogle Scholar
  127. 127.
    Ylänne J, Chen Y, O’Toole TE. Distinct functions of integrin a and ß subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol 1993; 122: 223–233.PubMedCrossRefGoogle Scholar
  128. 128.
    LaFlamme S, Akiyama SK, Yamada K. Regulation of fibronectin receptor distribution. J Cell Biol 1992; 117: 437–447.PubMedCrossRefGoogle Scholar
  129. 129.
    Reszka AA, Hayashi Y, Horwitz A. Identification of amino acid sequences in the integrin f3 cytoplasmic domain implicated in cytoskeletal association. J Cell Biol 1992; 117: 1321–1330.PubMedCrossRefGoogle Scholar
  130. 130.
    Hayashi Y, Haimovich B, Reszka A et al. Expression and function of chicken 131 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 Cells. J Cell Biol 1990; 110: 175–184.PubMedCrossRefGoogle Scholar
  131. 131.
    Ylänne J, Huuskonen J, O’Toole TE et al. Mutation of the cytoplasmic domain of the integrin (33 subunit. Differential effects on cell spreading, recruitment to adhesion plaques, endocytosis and phagocytosis. J Biol Chem 1995; 270: 9550–9557.PubMedCrossRefGoogle Scholar
  132. 132.
    Chen W-J, Goldstein JL, Brown MS. NPXY, a sequence often found in the cytoplasmic domain, is required for coated pit-mediated internalization of low density lipoprotein receptor. J Biol Chem 1990; 265: 3116–3123.PubMedGoogle Scholar
  133. 133.
    O’Toole TE, Ylänne J, Culley BM. Regulation of integrin affinity states through an NPXY motif in the 3-subunit cytoplasmic domain. J Biol Chem 1995; 270: 8553–8558.PubMedCrossRefGoogle Scholar
  134. 134.
    Balzac F, Belkin AM, Koteliansky VE et al. Expression and functional analysis of a cytoplasmic domain variant of the ßl integrin subunit. J Cell Biol 1993; 121: 171–178.PubMedCrossRefGoogle Scholar
  135. 135.
    Balzac F, Retta SF, Albini A et al. Expression of 131B integrin isoform in CHO cells results in a dominant negative effect in cell adhesion and motility. J Cell Biol 1994; 127: 557–565.PubMedCrossRefGoogle Scholar
  136. 136.
    Chatila TA, Geha RS, Arnaout MA. Constitutive and stimulus-induced phosporylation of CD11/CD18leukocyte adhesion molecules. J Cell Biol 1989; 109: 3435–3444.PubMedCrossRefGoogle Scholar
  137. 137.
    Hirst R, Horwitz A, Buck C et al. Phosporylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci USA 1986; 83: 6470–6474.PubMedCrossRefGoogle Scholar
  138. 138.
    Tapley P, Horwitz A, Buck C et al. Integrins isolated from Rous sarcoma virus-transformed chicken embryo. Oncogene 1989; 4: 325–333.PubMedGoogle Scholar
  139. 139.
    Horvath AR, Elmore MA, Kellie S. Differential tyrosine-specific phosphorylation of integrin in Rous sarcoma virus transformed cells with differing transformed phenotypes. Oncogene 1990; 5: 1349–1357.PubMedGoogle Scholar
  140. 140.
    Pasqualini R, Hemler ME. Contrasting roles for integrin ßl and 05 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J Cell Biol 1994; 125: 447–460.PubMedCrossRefGoogle Scholar
  141. 141.
    Fornaro M, Yheng D-Q, Languino LR. The novel structural motif G1n795-Glns02 in the integrin Pic cytoplasmic domain regulates cell proliferation. J Biol Chem 1995; 270: 24666–24669.PubMedCrossRefGoogle Scholar
  142. 142.
    Cheresh DA, Pytela R, Pierschbacher MD et al. An arg-gly-asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2. J Cell Biol 1987; 105: 1163–1173.PubMedCrossRefGoogle Scholar
  143. 143.
    Brown E, Hooper L, Ho T et al. Integrinassociated protein: a 50-kDa plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111: 2785–2794.PubMedCrossRefGoogle Scholar
  144. 144.
    Lindberg FP, Gresham HD, Schwarz E et al. Molecular cloning of integrin associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in avß3-dependent ligand binding. J Cell Biol 1993; 123: 485–496.PubMedCrossRefGoogle Scholar
  145. 145.
    Berditchevski F, Zutter MM, Hemler ME. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell 1996; 7: 193–207.PubMedGoogle Scholar
  146. 146.
    Wright MD, Tomlinson MG. The ins and outs of the transmembrane 4 superfamily. Immunology Today 1994; 15: 588–594.PubMedCrossRefGoogle Scholar
  147. 147.
    Chan BMC, Hemler ME. Multiple functional forms of the integrin VLA-2 can be derived from a single a2 cDNA clone: Interconversion of forms induced by an anti-ßi antibody. J Cell Biol 1993; 120: 537–543.PubMedCrossRefGoogle Scholar
  148. 148.
    Faull RJ, Kovach NL, Harlan JM, Ginsberg MH. Affinity modulation of integrin a5ß1: Regulation of the functional response by soluble fibronectin. J Cell Biol 1993; 121: 155–162.PubMedCrossRefGoogle Scholar
  149. 149.
    Delwel GO, de Melker AA, Hogervorst F et al. Distinct and overlapping ligand specificities of the a3Aß1 and a6Aßl integrins: Recognition of laminin isoforms. Mol Biol Cell 1994; 5: 203–215.PubMedGoogle Scholar
  150. 150.
    Altieri DC, Edgington TS. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD1 lb/CD18 (Mac-1). J Immunol 1988; 141: 2656–2660.PubMedGoogle Scholar
  151. 151.
    Pelletier AJ, Kunicki T, Quaranta V. Activation of the integrin avß, involves a discrete cation-binding site that regulates conformation. J Biol Chem 1996; 271: 1364–1370.PubMedCrossRefGoogle Scholar
  152. 152.
    Frelinger AL, Du X, Plow EF et al. Monoclonal antibodies to ligand-occupied conformers of integrin a116ß, (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J Biol Chem 1991; 266: 17106–17111.PubMedGoogle Scholar
  153. 153.
    Sims PJ, Ginsberg MH, Plow EF et al. Effect of platelet activation on the conformation of the plasma membrane glycoprotein lib-IIIa complex. J Biol Chem 1991; 266: 7345–7352.PubMedGoogle Scholar
  154. 154.
    Kieffer N, Fitzgerald LA, Wolf D et aI. Adhesive properties of the ß3 integrins: comparison of GP IIb-IIIa and the vitronectin receptor individually expressed in human melanoma cell lines. J Cell Biol 1991; 113: 451–461.PubMedCrossRefGoogle Scholar
  155. 155.
    Tawil NJ, Houde M, Blacher R et al. alßi integrin heterodimer functions as a dual laminin/collagen receptor in neural cells. Biochemistry 1990; 29: 6540–6544.PubMedCrossRefGoogle Scholar
  156. 156.
    Gullberg D, Turner D, Borg TK et al. Different 31-integrin collagen receptors on rat hepatocytes and cardiac fibroblast. Exp Cell Res 1990; 190: 254–264.PubMedCrossRefGoogle Scholar
  157. 157.
    Gullberg D, Gehlsen KR, Turner DC et al. Analysis of al ß1, a,ßi and a,ßi integrins in cell-collagen interactions: identification of conformation dependent a1ßß binding sites in collagen type I. EMBO J 1992; 11: 3865–3873.PubMedGoogle Scholar
  158. 158.
    Kern A, Eble J, Golbik R et al. Interaction of type IV collagen with the isolated integrins aißi and aß. Eur J Biochem 1993; 215: 151–159.PubMedCrossRefGoogle Scholar
  159. 159.
    Kunicki TJ, Nugent DJ, Staats SJ et al. The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein la-IIa complex. J Biol Chem 1988; 263: 4516–4519.PubMedGoogle Scholar
  160. 160.
    Staatz WD, Rajpara SM, Wayner EA et al. The membrane glycoprotein la-lIa (VLA-2) complex mediates the Mg“-dependent adhesion of platelets to collagen. J Cell Biol 1989; 108: 1917–1924.PubMedCrossRefGoogle Scholar
  161. 161.
    Schiro JA, Chan BMC, Roswit WT et al. Integrin a2ß1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 1991; 67: 403–410.PubMedCrossRefGoogle Scholar
  162. 162.
    Pfaff M, Göhring W, Brown JC et al. Binding of purified collagen receptors (al ßl and a2ß1) and RGD-dependent integrins to laminins and laminin fragments. Eur J Biochem 1994; 225: 975–981.PubMedCrossRefGoogle Scholar
  163. 163.
    Hall DE, Reichardt LF, Crowley E et al. The a1/91 and a,/131 integrin heterodimers mediate cell attachment to distinct sites on laminin. J Cell Biol 1990; 110: 2175–2184.PubMedCrossRefGoogle Scholar
  164. 164.
    Lallier T, Bronner-Fraser M. aß131 integrin on neural crest cells recognizes some laminin substrata in a Ca-’’-independent manner. J Cell Biol 1992; 119: 1335–1315.PubMedCrossRefGoogle Scholar
  165. 165.
    Colognato-Pyke I I, O’Rear JJ, Yamada Yet al. Mapping of network-forming, heparin-binding, and arß, integrin-recognition sites within the a-chain short arm of laminin-1. J Biol Chem 1995; 270: 9398–9406.PubMedCrossRefGoogle Scholar
  166. 166.
    Elices MJ, Urry LA, Hemler ME. Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentally influenced by arg-gly-asp peptide and by divalent cations. J Cell Biol 1991; 112: 169–181.PubMedCrossRefGoogle Scholar
  167. 167.
    Carter WG, Ryan MC, Gahr PJ. Epiligrin, a new cell adhesion ligand for integrin a3ß1 in epithelial basement membranes. Cell 1991; 65: 599–610.PubMedCrossRefGoogle Scholar
  168. 168.
    Eble JA, Golbik R, Mann K, Kühn K. The al131 integrin recognition site of the basement membrane collagen molecule lal(IV)}2a2(IV). EMBO J 1993; 12: 4795–4802.PubMedGoogle Scholar
  169. 169.
    Goodman SL, Aumailley M, Van der Mark H. Multiple cell surface receptors for the short arm of laminin: a1131 integrin and RGD-dependent proteins mediate cell attachment only to domains III in murine tumor laminin. J Cell Biol 1991; 113: 931–941.PubMedCrossRefGoogle Scholar
  170. 170.
    Lallier T, Deutzmann R, Perris R et al. Neural crest cell interactions with laminin: structural requirements and localization of the binding site for alß1 integrin. Dev Biol 1994; 162: 451–464.PubMedCrossRefGoogle Scholar
  171. 171.
    Pfaff M, Aumailley M, Specks U et al. Integrin and arg-gly-asp dependence of cell adhesion to the native and unfolded triple helix of collagen type VI. Exp Cell Res 1993; 206: 167–176.PubMedCrossRefGoogle Scholar
  172. 172.
    Takada Y, Hemler ME. The primary structure of the VLA-2/collagen receptor a2 subunit (platelet GPIa): Homology to other integrins and the presence of a possible collagen-binding domain. J Cell Biol 1989; 109: 397–407.PubMedCrossRefGoogle Scholar
  173. 173.
    Grzesiak JJ, Davis GE, Kirchhofer D et al. Regulation of a)131-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mg’’ and Cat. J Biol Chem 1992; 117: 1109–1117.Google Scholar
  174. 174.
    Riikonen T, Westermarck J, Koivisto L et al. Integrin a2ß1 is a positive regulator of collagenase (MMP-1) and collagen al(I) gene expression. J Biol Chem 1995; 270: 13548–13552.PubMedCrossRefGoogle Scholar
  175. 175.
    Langholz O, Röckel D, Mauch C et al. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by a1ß1 and a2ß1 integrins. J Cell Biol 1995; 131: 1903–1915.PubMedCrossRefGoogle Scholar
  176. 176.
    Santoro SA, Walsh JJ, Staatz WD et al. Distinct determinants on collagen support a2131 integrin-mediated platelet adhesion and platelet activation. Cell Reg 1991; 2: 905–913.Google Scholar
  177. 177.
    Burger SR, Zutter MM, Sturgill-Kszycki S et al. Induced cell surface expression of functional a7ß1 integrin in megakaryocytic differentiation of K562 leukemic cells. Exp Cell Res 1992; 202: 28–35.PubMedCrossRefGoogle Scholar
  178. 178.
    Watt FM, Jones PH. Expression and function of the keratinocytes integrins. Develop 1993; Suppl: 185–192.Google Scholar
  179. 179.
    Duband J-L, Belkin AM, Syfrig J et al. Expression of al integrin, a laminin-collagen receptor, during myogenesis and neurogenesis in the avian embryo. Develop 1992; 116: 585–600.Google Scholar
  180. 180.
    Belkin VM, Belkin AM, Koteliansky VE. Human smooth muscle VLA-1 integrin: purification, substrate specificity, localization in aorta, and expression during development. J Cell Biol 1990; 111: 2159–2170.PubMedCrossRefGoogle Scholar
  181. 181.
    Tawil N, Wilson P, Carbonetto S. Integrins in point contacts mediate cell spreading: factors that regulate integrin accumulation in point contacts vs focal contacts. J Cell Biol 1993; 120: 261–271.PubMedCrossRefGoogle Scholar
  182. 182.
    Kramer RH, Marks N. Identification of integrin collagen receptors on human melanoma cells. J Biol Chem 1989; 264: 4684–4688.PubMedGoogle Scholar
  183. 183.
    Zambruno G, Marchisio PC, Melchiori A et al. Expression of integrin receptors and their role in adhesion, spreading and migration of normal human melanocytes. J Cell Sci 1993; 105: 170–190.Google Scholar
  184. 184.
    Forsberg E, Ek B, Engström A et al. Purification and characterization of integrin a9131. Exp Cell Res 1994; 213: 183–190.PubMedCrossRefGoogle Scholar
  185. 185.
    Palmer EL, Rüegg C, Ferrando R et al. Sequence and tissue distribution of the integrin a9 subunit, a novel partner of 131 that is widely distributed in epithelia and muscle. J Cell Biol 1993; 123: 1289–1297.PubMedCrossRefGoogle Scholar
  186. 186.
    Yokosaki Y, Palmer EL, Prieto AL et al. The integrin a9ß1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 1994; 269: 26691–26696.PubMedGoogle Scholar
  187. 187.
    Takada Y, Murphy E, Pil P et al. Molecular cloning and expression of the cDNA for a; subunit of human aj(31 (VLA-3), an integrin receptor for fibronectin, laminin, and collagen. J Cell Biol 1991; 115: 257–266.PubMedCrossRefGoogle Scholar
  188. 188.
    Dedhar S, Jewell K, Rojiani M et al. The receptor for the basement membrane glycoprotein entactin is the integrin a3/131. J Biol Chem 1992; 267: 18909–18914.Google Scholar
  189. 189.
    Symington BE, Takada Y, Carter WG. Interaction of integrins a3131 and a,131: potential role in keratinocyte intercellular adhesion. J Cell Biol 1993; 120: 523–535.PubMedCrossRefGoogle Scholar
  190. 190.
    Sriramarao P, Steffner P, Gehlsen KR. Biochemical evidence for the homophilic interaction of the a3ß1 integrin. J Biol Chem 1993; 268: 22036–22041.PubMedGoogle Scholar
  191. 191.
    Weitzman JB, Chen A, Hemler ME. Investigation of the role of (31 integrins in cell-cell adhesion. J Cell Sci 1995; 108: 3635–3644.PubMedGoogle Scholar
  192. 192.
    Wayner EA, Gil SG, Murphy GF et al. Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for a3131 positive T lymphocytes. J Cell Biol 1993; 121: 1141–1152.PubMedCrossRefGoogle Scholar
  193. 193.
    Weitzman JB, Pasqualini R, Takada Y et al. The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading, and homotypic cell aggregation. J Biol Chem 1993; 268: 8651–8657.PubMedGoogle Scholar
  194. 194.
    Rousselle P, Aumailley M. Kalinin is more efficient than laminin in promoting adhesion of primary keratinocytes and some other epithelial cells and has a different requirement for integrin receptors. J Cell Biol 1994; 125: 205–214.PubMedCrossRefGoogle Scholar
  195. 195.
    Cooper HM, Tamura RN, Quaranta V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the (56131 integrin. J Cell Biol 1991; 115: 843–850.PubMedCrossRefGoogle Scholar
  196. 196.
    Song WK, Wang W, Foster RF et al. H36-a7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J Cell Biol 1992; 117: 643–657.PubMedCrossRefGoogle Scholar
  197. 197.
    Echtermeyer F, Schöber S, Pöschl E et al. Specific induction of cell motility on laminin by a7 laminin. J Biol Chem 1996; 271: 2071–2075.PubMedCrossRefGoogle Scholar
  198. 198.
    Kramer RH. McDonald KA, Vu MP. Human melanoma cells express a novel integrin receptor for laminin. J Biol Chem 1989; 264: 15642–15649.PubMedGoogle Scholar
  199. 199.
    Einheber S, Milner TA, Giancotti F et al. Axonal regulation of Schwann cell integrin expression suggests a role for a6134 in myelination. J Cell Biol 1993; 123: 1223–1236.PubMedCrossRefGoogle Scholar
  200. 200.
    Sonnenberg A, Linders CJT, Daams JH et al. The a6ß1 (VLA-6) and a6134 protein complexes: tissue distribution and biochemical properties. J Cell Sci 1990; 96: 207–217.PubMedGoogle Scholar
  201. 201.
    Niessen CM, Cremona O, Damms H et al. Expression of the integrin a6134 in peripheral nerves: localization in Schwann and perineural cells and different variants of the 13i subunit. J Cell Sci 1994; 107: 543–552.PubMedGoogle Scholar
  202. 202.
    Sonnenberg A, Linders CJT, Modderman PW et al. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that a6131 but not a6ß4 functions as a major receptor for fragment E8. J Cell Biol 1990; 110: 2145–2155.PubMedCrossRefGoogle Scholar
  203. 203.
    Van der Mark H, Dörr J, Sonnenberg A et al. Skeletal myoblasts utilize a novel (31-series integrin and not a6131 for binding to the E8 and T8 fragments of laminin. J Biol Chem 1991; 266: 23593–23601.PubMedGoogle Scholar
  204. 204.
    Lee EC, Loty MM, Steele GD et al. The laminin (56(34 is a laminin receptor. J Cell Biol 1992; 117: 671–678.PubMedCrossRefGoogle Scholar
  205. 205.
    Gehlsen KR, Sriramarao P, Furcht LE et al. A synthetic peptide derived from the carboxy terminus of the laminin A chain represents a binding site for the a,(31 integrin. J Cell Biol 1992; 117: 449–459.PubMedCrossRefGoogle Scholar
  206. 206.
    Rousselle P, Golbik R, Van der Rest M et al. Structural requirements for cell adhesion to kalinin (laminin-5). J Biol Chem 1995; 270: 13766–13770.PubMedCrossRefGoogle Scholar
  207. 207.
    Sung U, O’Rear JJ, Yurchenco PD. Cell and heparin binding in the distal long arm of laminin: identification of active and cryptic sites with recombinant and hybrid glycoprotein. J Cell Biol 1993; 123: 1255–1268.PubMedCrossRefGoogle Scholar
  208. 208.
    Hogervorst F, Kuikman I, Van Kessel AG et al. Molecular cloning of the human a6 subunit. Alternative splicing of a6 mRNA and chromosomal localization of the a6 and 134 genes. Eur J Biochem 1991; 199: 425–433.PubMedCrossRefGoogle Scholar
  209. 209.
    Spinardi L, Ren Y-L, Sanders R et al. The Pi subunit cytoplasmic domain mediates the interaction of the a.131 integrin with the cytoskeleton of hemidesmosomes. Mol Biol Cell 1993; 4: 871–884.PubMedGoogle Scholar
  210. 210.
    Spinardi L, Einheber S, Cullen T et al. A recombinant tail-less integrin 134 subunit disrupts hemidesmosomes, but does not suppress u(134-mediated cell adhesion to laminins. J Cell Biol 1995; 129: 473–487.PubMedCrossRefGoogle Scholar
  211. 211.
    Schwarz MA, Owaribe K, Kartenheck J et al. Desmosomes and hemisdesmosomes: constitutive molecular components. Annu Rev Cell Biol 1990; 6: 461–491.PubMedCrossRefGoogle Scholar
  212. 212.
    Giancotti FG, Stepp MA, Suzuki S et al. Proteolytic processing of endogenous and recombinant [34 integrin subunit. J Cell Biol 1992; 118: 951–959.PubMedCrossRefGoogle Scholar
  213. 213.
    Horwitz A, Duggan K, Greggs R et al. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 1985; 101: 2134–2144.PubMedCrossRefGoogle Scholar
  214. 214.
    Plantefaber LC, Hynes RO. Changes in integrin receptors on oncogenically transformed cells. Cell 1989; 56: 281–290.PubMedCrossRefGoogle Scholar
  215. 215.
    Giancotti FG, Ruoslahti E. Elevated levels of the a5ß1 fibronectin receptor suppress the transformed phenotype of chinese hamster ovary cells. Cell 1990; 60: 849–859.PubMedCrossRefGoogle Scholar
  216. 216.
    Schreiner C, Fisher M, Hussein S et al. Increased tumorigenicity of fibronectin receptor deficient chinese hamster ovary cell variants. Cancer Res 1991; 51: 1738–1740.PubMedGoogle Scholar
  217. 217.
    Wang DH, Zhou G-H, Birkenmeier TM et al. Autocrine transforming growth factor ßi modulates the expression of integrin a5ß1 in human colon carcinoma FET cells. J Biol Chem 1995; 270: 14154–14159.PubMedCrossRefGoogle Scholar
  218. 218.
    Varner JA, Emerson DA, Juliano RL. Integrin a5ß1 expression negatively regulates cell growth: Reversal by attachment to fibronectin. Mol Biol Cell 1995; 6: 725–740.PubMedGoogle Scholar
  219. 219.
    Werb Z, Tremble PM, Behrendtsen O et al. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 1989; 109: 877–889.PubMedCrossRefGoogle Scholar
  220. 220.
    Huhtala P, Humphries MJ, McCarthy JB et al. Cooperative signaling by a5ß1 and a4ß1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 1995; 129: 867–879.PubMedCrossRefGoogle Scholar
  221. 221.
    Beauvais A, Erickson CA, Goins T et al. Changes in the fibronectin-specific integrin expression pattern modify the migratory behavior of sarcoma S180 cells in vitro and in embryonic development. J Cell Biol 1995; 128: 699–713.PubMedCrossRefGoogle Scholar
  222. 222.
    Main AL, Harvey TS, Baron M et al. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 1992; 71: 671–678.PubMedCrossRefGoogle Scholar
  223. 223.
    Dickinson CD, Veerapandain B, Da X-P et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol 1994; 236: 1079–1092.PubMedCrossRefGoogle Scholar
  224. 224.
    Pierschbacher MD, Ruoslahti E. Cell attachment of fibronectin can be duplicated by small fragments of the molecule. Nature 1984; 309, 30–33.PubMedCrossRefGoogle Scholar
  225. 225.
    Aota S-i, Nomizu M, Yamada KM. The short amino acid sequence pro-his-ser-arg-asn in human fibronectin enhances cell-adhesive function. J Cell Biol 1994; 269: 24756–24761.Google Scholar
  226. 226.
    Danen EHJ, Aota S-i, Van Kraats AA et al. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin 0131. J Biol Chem 1995; 270: 21612–21618.PubMedCrossRefGoogle Scholar
  227. 227.
    Leahy DJ, Aukhil I, Erickson HP. 2,0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 1996; 84: 155–164.PubMedCrossRefGoogle Scholar
  228. 228.
    Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the a5ß1 integrin from a phage display library. J Cell Biol 1994; 124: 373–380.PubMedCrossRefGoogle Scholar
  229. 229.
    Schnapp L, Breuss J, Ramos D et al. Sequence and tissue distribution of human integrin as subunit: a (31-associated a subunit expressed in smooth muscle cells. J Cell Sci 1995; 108: 537–544.PubMedGoogle Scholar
  230. 230.
    Schnapp LM, Hatch N, Ramos DM et al. The human integrin VI functions as a receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 1995; 270: 23196–23202.PubMedCrossRefGoogle Scholar
  231. 231.
    Malek-Hedayat S, Rome LH. Expression of a (31-related integrin by oligodendroglia in primary culture: Evidence for functional role in myelination. J Cell Biol 1994; 124: 1039–1046.PubMedCrossRefGoogle Scholar
  232. 232.
    Bodary SC, McLean JW. The integrin [31 subunit associates with the vitronectin receptor av subunit to form a novel vitronectin receptor in a human embryonic kidney cell line. J Biol Chem 1990; 265: 5938–5941.PubMedGoogle Scholar
  233. 233.
    Vogel BE, Tarone G, Giancotti et al. A novel fibronectin receptor with an unexpected subunit composition. J Biol Chem 1990; 265: 5934–5937.PubMedGoogle Scholar
  234. 234.
    Hu DD, Lin ECK, Kovach NL et al. A biochemical characterization of the binding of osteopontin to integrins avß1 and av135. J Biol Chem 1995; 270: 26232–26238.PubMedCrossRefGoogle Scholar
  235. 235.
    Katagiri Y, Hiroyama T, Akamatsu N et al. Involvement of av13, integrin in mediating fibrin gel retraction. J Biol Chem 1995; 270: 1785–1790.PubMedCrossRefGoogle Scholar
  236. 236.
    Cheresh DA, Spiro RC. Biosynthetic and functional properties of an arg-gly-asp-directed receptor involved in human melanoma cell adhesion to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987; 262: 17708–17711.Google Scholar
  237. 237.
    Tsao PW, Mousa SA. Thrompospondin mediates calcium mobilization in fibroblasts via its arg-gly-asp and carboxyl-terminal domains. J Biol Chem 1995; 270: 23747–23753.PubMedCrossRefGoogle Scholar
  238. 238.
    Prieto AL, Edelman GM, Crossin KL. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci USA 1993; 90: 10154–10158.PubMedCrossRefGoogle Scholar
  239. 239.
    Denhardt DT, Guo X. Osteopondin: a protein with diverse functions. FASEB J 1993; 7: 1475–1482.PubMedGoogle Scholar
  240. 240.
    Senger DR, Petruzzi CA, PapadopoulosSergiou A et al. Adhesive properties of osteopontin: Regulation by naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol Biol Cell 1994; 5: 565–574.PubMedGoogle Scholar
  241. 241.
    Hu DD, Hoyer JR, Smith JW. Ca’ suppresses cell adhesion to osteopontin by attentuating binding affinity for integrin av(3,. J Biol Chem 1995; 270: 9917–9925.PubMedCrossRefGoogle Scholar
  242. 242.
    Pfaff M, Reinhardt DP, Sakai LY et al. Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 1996; 384: 247–250.PubMedCrossRefGoogle Scholar
  243. 243.
    Sakamoto H, Broekelmann T, Cheresh DA et al. Cell-type specific recognition of RGDand non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 1996; 271: 4916–4922.PubMedCrossRefGoogle Scholar
  244. 244.
    Piali L, Hammel P, Uherek C et al. CD31/ PECAM-1 is a ligand for av133 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 1995; 130: 451–460.PubMedCrossRefGoogle Scholar
  245. 245.
    Ventstrom K, Reichardt L.138 integrins mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. Mol Biol Cell 1995; 6: 419–431.Google Scholar
  246. 246.
    Cheresh DA, Smith JW, Cooper HM et al. A novel vitronectin receptor integrin (a03x) is responsible for distinct adhesive proper- ties of carcinoma cells. Cell 1989; 57, 59–69.PubMedCrossRefGoogle Scholar
  247. 247.
    Weinacker A, Chen A, Agrez M et al. Role of the integrin av[36 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. J Biol Chem 1994; 269: 6940–6948.PubMedGoogle Scholar
  248. 248.
    Agrez M, Chen A, Cone RI et al. The œv136 integrin promotes proliferation of colon carcinoma cells through a unique region of the 136 cytoplasmic domain. J Cell Biol 1994; 127: 547–556.PubMedCrossRefGoogle Scholar
  249. 249.
    Breuss JM, Gillet N, Lu L et al. Restricted distribution of integrin 136 mRNA in primate epithelial tissues. J llistochem Cytochem 1993; 41: 1521–1527.CrossRefGoogle Scholar
  250. 250.
    Albelda SM, Mette SA, Elder DE et al. Integrin distribution in malignant melanoma: Association of the 13, subunit with tumor progression. Cancer Res 1990; 50: 6757–6764.PubMedGoogle Scholar
  251. 251.
    Nip J, Shibata H, Loskutoff DJ et al. Human melanoma cells derived from lymphatic metastases use integrin uß,ß, to adhere to lymph node vitronectin. J Clin Invest 1992; 90: 1406–1413.PubMedCrossRefGoogle Scholar
  252. 252.
    Montgomery AMP, Reisfeld RA, Cheresh DA. Integrin avß, rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 1994; 91: 8856–8860.PubMedCrossRefGoogle Scholar
  253. 253.
    Brooks PC, Montgomery AMP, Rosenfeld M et aI. Integrin antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–1164.PubMedCrossRefGoogle Scholar
  254. 254.
    Chambers TJ, Fuller K, Darby JA et al. Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone and Mineral 1986; 1: 127–135.PubMedGoogle Scholar
  255. 255.
    Davies J, Warwick J, Totty N et al. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 1989; 109: 1817–1826.PubMedCrossRefGoogle Scholar
  256. 256.
    Zhang Z, Morla AO, Vuori K et al. The av(31 integrin functions as a fibronectin receptor but does not support fibronectin matrix assemby and cell migration on fibronectin. J Cell Biol 1993; 122: 235–242.PubMedCrossRefGoogle Scholar
  257. 257.
    Wayner EA, Orlando RA, Cheresh DA. Integrins av133 and avß5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J Cell Biol 1991; 113: 919–929.PubMedCrossRefGoogle Scholar
  258. 258.
    Delannet M, Martin F, Bossy B et al. Specific roles of the aVf3l, aV(33 and aVß5 integrins in avian neural crest cell adhesion and migration on vitronectin. Developm 1994; 120: 2687–2702.Google Scholar
  259. 259.
    Kim JP, Zhang K, Chen JD et al. Vitronectin-driven human keratinocyte locomotion is mediated by the avß5 integrin receptor. J Biol Chem 1994; 269: 26926–26932.PubMedGoogle Scholar
  260. 260.
    Klemke RL, Yebra M, Bayna EM et al. Receptor tyrosine kinase signaling required for integrin avß5-directed cell motility but not adhesion on vitronectin. J Cell Biol 1994; 127: 859–866.PubMedCrossRefGoogle Scholar
  261. 261.
    Panetti TS, McKeown-Longo PJ. The avß5 integrin receptor regulates receptor-mediated endocytosis of vitronectin. J Biol Chem 1993; 268: 11988–11993.PubMedGoogle Scholar
  262. 262.
    Panetti TS, Wilcox SA, Horzempa C et al. avß5 integrin receptor-mediated endocytosis of vitronectin is protein kinase C-dependent. J Biol Chem 1995; 270: 18593–18597.PubMedCrossRefGoogle Scholar
  263. 263.
    Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol 1993; 5: 864–868.PubMedCrossRefGoogle Scholar
  264. 264.
    Wickham TJ, Mathias P, Cheresh DA et al. Integrins av(33 and avß5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.PubMedCrossRefGoogle Scholar
  265. 265.
    Wickham TJ, Filardo EJ, Cheresh DA et al. Integrin avß5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127: 257–264.PubMedCrossRefGoogle Scholar
  266. 266.
    Vogel BE, Lee S-J, Hildebrand A et al. A novel integrin specificity exemplified by binding of the avß5 integrin to the basic domain of the HIV tat protein and vitronectin. J Cell Biol 1993; 121: 461–468.PubMedCrossRefGoogle Scholar
  267. 267.
    Isberg RR, Leong JM. Multiple 131 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 1990; 60: 861–871.PubMedCrossRefGoogle Scholar
  268. 268.
    Bliska JB, Galân JE, Falkow S. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 1993; 73: 903–920.PubMedCrossRefGoogle Scholar
  269. 269.
    Calvete JJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/ IIIa complex. Thrombosis and Haemostasis 1994; 72: 1–15.PubMedGoogle Scholar
  270. 270.
    Calvete JJ. On the structure and function of platelet integrin allhßj, the fibrinogen receptor. Proceedings of the Society for Experimental Biology and Medicine 1995; 208: 346–360.PubMedGoogle Scholar
  271. 271.
    Fitzgerald LA, Poncz M, Steiner B et al. Comparison of cDNA-derived protein sequences of human fibronectin and vitronectin receptor a-subunits and platelet glycoprotein IIb. Biochem 1987; 26: 8158–8165.CrossRefGoogle Scholar
  272. 272.
    Calvete JJ, Mann K, Alvarez MV et al. Proteolytic digestion of the isolated platelet fibrinogen receptor, integrin GPIIb/IIIa. Biochem J 1992; 282: 523–532.PubMedGoogle Scholar
  273. 273.
    Uzan G, Prenant M, Prandini M-H et al. Tissue-specific expression of the platelet GPIIb gene. J Biol Chem 1991; 266: 8932–8939.PubMedGoogle Scholar
  274. 274.
    Prandini M-H, Uzan G, Martin F et al. Characterization of a specific erythromegakaryocytic enhancer within the glycoprotein IIb promoter. J Biol Chem 1992; 267: 10370–10274.PubMedGoogle Scholar
  275. 275.
    Kolodziej MA, Vilaire G, Rifat S et al. Effect of deletion of glycoprotein IIb exon 28 on the expression of the platelet glycoprotein IIb/IIIa complex. Blood 1991; 78: 2344–2353.PubMedGoogle Scholar
  276. 276.
    Shattil SJ, Ginsberg MH, Brugge JS. Adhesive signaling in platelets. Curr Opin Cell Biol 1994; 6: 695–704.PubMedCrossRefGoogle Scholar
  277. 277.
    Du X, Plow WF, Frelinger III AL et al. Ligands “activates” integrin a111ß3 (platelet GPIIb-IIIa). Cell 1991; 65: 409–416.PubMedCrossRefGoogle Scholar
  278. 278.
    Bajt MJ, Loftus JC, Gawaz MP et al. Characterization of a gain of function mutation of integrin a331133 (platelet glycoprotein IIbIIIa). J Biol Chem 1992; 267: 22211–22216.PubMedGoogle Scholar
  279. 279.
    Savage B, Bottini E, Ruggeri ZM. Interaction of integrin an 133 with multiple fibrinogen domains during platelet adhesion. J Biol Chem 1995; 270: 28812–28817.PubMedCrossRefGoogle Scholar
  280. 280.
    Farrell DH, Thiagarajan R, Chung DW et al. Role of fibrinogen a and y chain sites in platelet aggregation. Proc Natl Acad Sci USA 1992; 89: 10729–10732.PubMedCrossRefGoogle Scholar
  281. 281.
    Lam SCT, Plow EF, Smith MA et al. Evidence that arginyl-glycyl-aspartate peptides and fibrinogen y chain peptides share a common binding site on platelets. J Biol Chem 1987; 262: 947–950.PubMedGoogle Scholar
  282. 282.
    George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 1990; 75: 1383–1395.PubMedGoogle Scholar
  283. 283.
    Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425–434.PubMedCrossRefGoogle Scholar
  284. 284.
    Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–314.PubMedCrossRefGoogle Scholar
  285. 285.
    Corbi AL, Larson RS, Kishimoto TK et al. Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1 and p150,95. J Exp Med 1988; 167: 1597–1607.PubMedCrossRefGoogle Scholar
  286. 286.
    Corbi AL, Kishimoto TK, Miller LJ et al. The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD1 lb) a subunit. Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J Biol Chem 1988; 263: 12403–12411.PubMedGoogle Scholar
  287. 287.
    Arnaout MA. Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol Reviews 1990; 114: 145–180.CrossRefGoogle Scholar
  288. 288.
    Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1 and p150,95 glycoproteins. Ann Rev Med 1987; 38: 175–194.PubMedCrossRefGoogle Scholar
  289. 289.
    Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 1987; 51: 813–819.PubMedCrossRefGoogle Scholar
  290. 290.
    Simmons D, Makgoba MW, Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 1988; 331: 624–627.PubMedCrossRefGoogle Scholar
  291. 291.
    Staunton DE, Marlin SD, Stratowa C et al. Primary structure of ICAM-1 demostrates interaction between members of the immunglobulin and integrin supergene family. Cell 1988; 52: 925–933.PubMedCrossRefGoogle Scholar
  292. 292.
    Staunton DE, Dustin ML, Springer TA. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 1989; 339: 61–64.PubMedCrossRefGoogle Scholar
  293. 293.
    de Fougerolles AR, Stacker SA, Schwarting R et al. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-l. J Exp Med 1991; 174: 253–267.PubMedCrossRefGoogle Scholar
  294. 294.
    Fawcett J, Holness CLL, Needham LA et al. Molecular cloning of ICAM-3, a third ligand for LEA-1, constitutively expressed on resting leukocytes. Nature 1992; 360: 481–484.PubMedCrossRefGoogle Scholar
  295. 295.
    de Fougerolles AR, Klickstein LB, Springer TA. Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen-1. J Exp Med 1993; 177: 1187–1192.PubMedCrossRefGoogle Scholar
  296. 296.
    Campanero MR, del Pozo MA, Arroyo AG et al. ICAM-3 interacts with LEA-1 and regulates the LFA-1/ICAM-I cell adhesion pathway. J Cell Biol 1993; 123: 1007–1016.PubMedCrossRefGoogle Scholar
  297. 297.
    Campanero MR, Sanchez-Mateos P, del Pozo MA et aI. ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extra-cellular matrix ligands. J Cell Biol 1994; 127: 867–878.PubMedCrossRefGoogle Scholar
  298. 298.
    Staunton DE, Dustin ML, Erickson HP et al. The arrangement of immunoglobulinlike domains of ICAM-1 and the binding sites for LEA-1 and rhinovirus. Cell 1990; 61: 243–254.PubMedCrossRefGoogle Scholar
  299. 299.
    Li R, Xie J, Kantor C, Koistinen V et al. A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD1lb/CD18 and CD11c/CD18. J Cell Biol 1995; 129: 1143–1153.PubMedCrossRefGoogle Scholar
  300. 300.
    Nortamo P, Salcedo R, Timonen T et al. A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2. J Immunol 1991; 146: 2530–2535.PubMedGoogle Scholar
  301. 301.
    Holness CL, Bates PA, Littler AJ et al. Analysis of the binding site on intercellular adhesion molecule 3 for the leukocyte integrin lymphocyte function-associated antigen 1. J Biol Chem 1995; 270: 877–884.PubMedCrossRefGoogle Scholar
  302. 302.
    Springer T, Galfre G, Secher DS et al. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 1979; 9: 301–306.PubMedCrossRefGoogle Scholar
  303. 303.
    Shelley CS, Arnaout MA. The promoter of the CD1lb gene directs myeloid-specific and developmentally regulated expression. Proc Natl Acad Sci USA 1991; 88: 10525–10529.PubMedCrossRefGoogle Scholar
  304. 304.
    Wright SD, Rao PE, Van Voorhis WC et al. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci USA 1983; 80: 5699–5703.PubMedCrossRefGoogle Scholar
  305. 305.
    Beller DI, Springer TA, Schreiber RD. AntiMac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 1982; 156: 1000–1009.PubMedCrossRefGoogle Scholar
  306. 306.
    Altieri DC, Bader R, Mannucci PM et al. Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 1988; 107: 1893–1990.PubMedCrossRefGoogle Scholar
  307. 307.
    Wright SD, Weitz JI, Huang AJ et al. Complement receptor type three (CD11b/ CD18) of human polymorphnuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 1988; 85: 7734–7738.PubMedCrossRefGoogle Scholar
  308. 308.
    Altieri DC, Edgington TS. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem 1988; 263: 7007–7015.PubMedGoogle Scholar
  309. 309.
    Altieri DC, Morrissey JH, Edgington TS. Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: An alternative initiation of the coagulation protease cascade. Proc Natl Acad Sci USA 1988; 85: 7462–7466.PubMedCrossRefGoogle Scholar
  310. 310.
    Diamond MS, Staunton DE, de Fougerolles AR et al. ICAM-1 (CD54): A counter-receptor for Mac-1. J Cell Biol 1990; 111: 3129–3139.PubMedCrossRefGoogle Scholar
  311. 311.
    Diamond MS, Springer TA. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol 1993; 120: 545–556.PubMedCrossRefGoogle Scholar
  312. 312.
    Anderson DC, Miller LJ, Schmalstieg FC et al. Contributions of the Mac-1 glycoprotein family to adherence-dependent granylocyte functions: Structure-function assessments employing subunits-specific monoclonal antibodies. J Immunol 1986; 137: 15–27.PubMedGoogle Scholar
  313. 313.
    Zhou M-J, Brown EJ. CR3 (Mac-1, aM(32, CD 11 b/CD 18) and FcyRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcyRII and tyrosine phosporylation. J Cell Biol 1994; 125: 1407–1416.PubMedCrossRefGoogle Scholar
  314. 314.
    Altieri DC, Agbanyo FR, Plescia J et al. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 1990; 265: 12119–12122.PubMedGoogle Scholar
  315. 315.
    Altieri DC, Plescia J, Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen y chain interacts with CD11b/ CD18 integrin (aM(32, Mac-1) and promotes leukocyte adhesion. J Biol Chem 1993; 268: 1847–1853.PubMedGoogle Scholar
  316. 316.
    Diamond MS, Staunton DE, Marlin SD et al. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 1991; 65: 961–971.PubMedCrossRefGoogle Scholar
  317. 317.
    Rieu P, Ueda T, Harunta I et al. The A-domain of 132 integrin CD3 (CD11b/ CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J Cell Biol 1994; 127: 2081–2091.PubMedCrossRefGoogle Scholar
  318. 318.
    Muchowski PJ, Zhang L, Chang ER et al. Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J Biol Chem 1994; 269: 26419–26423.PubMedGoogle Scholar
  319. 319.
    Te Velde AA, Keizer GD, Figdor CG. Differential function of LFA-1 family molecules (CD11 and CD18) in adhesion of human monocytes to melanoma and endothelial cells. Immunol 1987; 61: 261–267.Google Scholar
  320. 320.
    Lo SK, Detmers PA, Levin SM et al. Transient adhesion of neutrophils to endothelium. J Exp Med 1989; 169: 1779–1793.PubMedCrossRefGoogle Scholar
  321. 321.
    Miller LJ, Schwarting R, Springer TA. Regulated expression of the Mac-1, LFA-1, pl50,95 glycoprotein family during leukocyte differentiation. J Immunol 1986; 137: 2891–2900.PubMedGoogle Scholar
  322. 322.
    Micklem KJ, Sim RB. Isolation of complement-fragment-iC3b-binding proteins by affinity chromatography. Biochem J 1985; 231: 233–236.PubMedGoogle Scholar
  323. 323.
    Hemler ME, Elices MJ, Parker C et al. Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol Reviews 1990; 114: 45–65.CrossRefGoogle Scholar
  324. 324.
    Williams DA, Rios M, Stephens C et al. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 1991; 352: 438–441.PubMedCrossRefGoogle Scholar
  325. 325.
    Papayannopoulou T, Nakamoto B. Peri-pherilization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc Natl Acad Sei USA 1993; 90: 9374–9378.CrossRefGoogle Scholar
  326. 326.
    Hemler ME, Huang C, Takada Y et al. Characterization of the cell surface hetero-dimer VLA-4 and related peptides. J Biol Chem 1987; 262: 11478–11485.PubMedGoogle Scholar
  327. 327.
    Rosen GD, Sanes JR, LaChance R et al. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 1992; 69: 1107–1119.PubMedCrossRefGoogle Scholar
  328. 328.
    Sheppard AM, Onken MD, Rosen GD et al. Expanding roles for a4 integrin and its ligands in develpment. Cell Adhes Commun 1994; 2: 27–43.PubMedCrossRefGoogle Scholar
  329. 329.
    Stepp MA, Urry LA, Hynes RO. Expression of a4 integrin mRNA and protein and fibronectin in the early chicken embryo. Cell Adhes Commun 1994; 2: 359–375.PubMedCrossRefGoogle Scholar
  330. 330.
    Qian F, Vaux DL, Weissman IL. Expression of the integrin a4ßl on melanoma cells can inhibit invasive stage of metastasis formation. Cell 1994; 77: 335–347.PubMedCrossRefGoogle Scholar
  331. 331.
    Campanero MR, Pulido R, Ursa MA et al. An alternative leukocyte homotypic adhesion mechanism, LFA-l/ICAM-1-independent, triggered through the human VLA-4 integrin. J Cell Biol 1990; 110: 2157–2165.PubMedCrossRefGoogle Scholar
  332. 332.
    Chan P-Y, Aruffo A. VLA-4 integrin mediates lymphocyte migration on the inducible endothelial cell ligand VCAM-1 and the extracellular matrix ligand fibronectin. J Biol Chem 1993; 268: 24655–24664.PubMedGoogle Scholar
  333. 333.
    Humphries MJ, Akiyama SK, Komoriya A et al. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell-type specific adhesion. J Cell Biol 1986; 103: 2637–2647.PubMedCrossRefGoogle Scholar
  334. 334.
    Humphries MJ, Akiyama SK, Komoriya A et al. Neurite extension of chicken peripheral nervous system neurons on fibronectin: relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced type III connecting segment. J Cell Biol 1988; 106: 1289–1297.PubMedCrossRefGoogle Scholar
  335. 335.
    Osborn L, Hession C, Tizard R et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989; 59: 1203–1211.PubMedCrossRefGoogle Scholar
  336. 336.
    Elices MJ, Osborn L, Takada Y et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60: 577–584.PubMedCrossRefGoogle Scholar
  337. 337.
    Mould AP, Wheldon LA, Komoriya A et al. Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin a1p]. J Biol Chem 1990; 265: 4020–4024.PubMedGoogle Scholar
  338. 338.
    Humphries MJ, Komoriya A, Akiyama SK et al. Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type specific adhesion. J Biol Chem 1987; 262: 6886–6892.PubMedGoogle Scholar
  339. 339.
    Wayner EA, Garcia-Pardo A, Humphries MJ et al. Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS- 1) in plasma fibronectin. J Cell Biol 1989; 109: 1321–1330.PubMedCrossRefGoogle Scholar
  340. 340.
    Guan J-L, Hynes RO. Lymphoid cell recognize an alternatively spliced segment of fibronectin via the integrin receptor a^. Cell 1990; 60: 53–61.PubMedCrossRefGoogle Scholar
  341. 341.
    Garcia-Pardo A, Wayner EA, Carter WG et al. Human B lymphocytes define an alternative mechanism of adhesion to fibronectin. The interaction of the afi{integrin with the LHGPEILDVPST sequence of the type III connecting segment is sufficient to promote cell attachment. J Immunol 1990; 144: 3361–3366.PubMedGoogle Scholar
  342. 342.
    Komoriya A, Green LJ, Mervic M et al. The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem 1991; 266:15075–15079-Google Scholar
  343. 343.
    Wayner EA, Kovach NL. Activation-depen-dent recognition by hematopoietic cells of the LDV-sequence in the V region of fibronectin. J Cell Biol 1992; 116: 489–497.PubMedCrossRefGoogle Scholar
  344. 344.
    Mould AP, Komoriya A, Yamada KM et al. The CS5 peptide is a second site in the IIICS region of fibronectin recognized by the integrin a4131. Inhibition of the aß131 function by RGD peptide homologues. J Biol Chem 1991; 266: 3579–3585.PubMedGoogle Scholar
  345. 345.
    Mould AP, Humphries MJ. Identification of a novel recognition sequence for the integrin a4131 in the COOH-terminal heparin-binding domain of fibronectin. EMBO J 1991; 10: 4089–4095.PubMedGoogle Scholar
  346. 346.
    Hession C, Tizard R, Vassallo C et al. Cloning of an alternative form of vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1991; 266: 6682–6685.PubMedGoogle Scholar
  347. 347.
    Osborn L, Vassallo C, Griffiths Browning B et al. Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (a4ß1). J Cell Biol 1994; 124: 601–608.PubMedCrossRefGoogle Scholar
  348. 348.
    Renz ME, Chiu HH, Jones S et al. Structural requirements for adhesion of soluble recombinant murine vascular cell adhesion molecule-1 to a4ß1. J Cell Biol 1994; 125: 1395–1406.PubMedCrossRefGoogle Scholar
  349. 349.
    Vonderheide RH, Tedder TF, Springer TA et al. Residues within the conserved amino acid motif of domains 1 and 4 of VCAM-1 are required for binding to VLA-4. J Cell Biol 1994; 125: 215–222.PubMedCrossRefGoogle Scholar
  350. 350.
    Jones EY, Harlos K, Bottomley MJ et al. Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature 1995; 373: 539–544.PubMedCrossRefGoogle Scholar
  351. 351.
    Wang J-H, Pepinsky RB, Stehle T et al. The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-1-a4 integrin interaction. Proc Natl Acad Sci USA 1995; 92: 5714–5718.PubMedCrossRefGoogle Scholar
  352. 352.
    Munoz M, Serrador J, Sanchez-Madrid F et al. A region of the integrin VLAa4 subunit involved in homotypic cell aggregation and in fibronectin but not vascular cell adhesion molecule-1 binding. J Biol Chem 1996; 271: 2696–2702.PubMedCrossRefGoogle Scholar
  353. 353.
    Yednock TA, Rosen SD. Lymphocyte Homing. Adv Immunol 1989; 44: 313–378.PubMedCrossRefGoogle Scholar
  354. 354.
    Ager A. Lymphocyte recirculation and homing: roles of adhesion molecules and chemoattractans. Trends Cell Biol 1994; 4: 326–333.PubMedCrossRefGoogle Scholar
  355. 355.
    Holzmann B, McIntyre BW, Weissman IL. Identification of a murine Peyer’s Patch-specific lymphocyte homing receptor as an integrin molecule with an a chain homologous to human VLA-4a. Cell 1989; 56: 37–46.PubMedCrossRefGoogle Scholar
  356. 356.
    Holzmann B, Weissman IL. Peyer’s patch-specific lymphocyte homing receptors consists of a VLA-4-like a chain associated with either of two integrin 13 chains, one of which is novel. EMBO J 1989; 8: 1735–1741.PubMedGoogle Scholar
  357. 357.
    Nakache M, Berg EL, Streeter PR et al. The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature 1989; 337: 179–181.PubMedCrossRefGoogle Scholar
  358. 358.
    Berlin C, Berg EL, Briskin MJ et al. a4137 integrin mediates lymphocyte binding to the mucosal vascular addressin MadCAM-1. Cell 1993; 74: 185–195.PubMedCrossRefGoogle Scholar
  359. 359.
    Rüegg C, Postigo AA, Sikorski EE et al. Role of integrin a437/a413P in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol 1992; 117: 179–189.PubMedCrossRefGoogle Scholar
  360. 360.
    Cepek KL, Shaw SK, Parker CM et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the a93, integrin. Nature 1994; 372: 190–193.PubMedCrossRefGoogle Scholar
  361. 361.
    Wilson R, Ainscough R, Anderson K et al. 2.2Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 1994; 368: 32–38.PubMedCrossRefGoogle Scholar
  362. 362.
    Gotwals PJ, Paine-Saunders SE, Stark KA et al. Drosophila integrins and their ligands. Curr Opin Cell Biol 1994; 6: 734–739.PubMedCrossRefGoogle Scholar
  363. 363.
    Gotwals PJ, Fessler LI, Wehrli M et al. Drosophila PSI integrin is a laminin receptor and differs in ligand specificity from PS2. Proc Natl Acad Sci USA 1994; 91: 11447–11451.PubMedCrossRefGoogle Scholar
  364. 364.
    Fogerty FJ, Fessler LI, Bunch TA et al. Tiggrin, a novel extracellular matrix protein that functions as a ligand for Drosophila apsfips integrin. Developm 1994; 120: 1747–1758.Google Scholar
  365. 365.
    Brower DL, Jaffe SM. Requirement for integrins during Drosophila wing development. Nature 1989; 342: 285–287.PubMedCrossRefGoogle Scholar
  366. 366.
    Brown NH, Bloor JW, Dunin-Borkowski O et al. Integrins and morphogenesis. Developm 1993; Supplement:177–183.Google Scholar
  367. 367.
    Volk T, Fessier LI, Fessier JH. The role for integrins in the formation of sarcomeric cytoarchitecture. Cell 1990; 63: 525–536.PubMedCrossRefGoogle Scholar
  368. 368.
    Bogaert T, Brown N, Wilcox M. The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachment. Cell 1987; 51: 929–940.PubMedCrossRefGoogle Scholar
  369. 369.
    Brown NH, King DL, Wilcox M et al. Developmentally regulated alternative splicing of Drosophila PS2 a transcripts. Cell 1989, 59: 185–195.PubMedCrossRefGoogle Scholar
  370. 370.
    MacKrell AJ, Blumberg B. Haynes SR et al. The lethal myosperoid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin 13 subunits. Proc Natl Acad Sci USA 1988; 85: 2633–2637.PubMedCrossRefGoogle Scholar
  371. 371.
    Yee GH, Hynes RO. A novel tissue-specific integrin subunit, (3v, expressed in the midgut of Drosophila melanogaster. Developm 1993; 118: 845–858.Google Scholar
  372. 372.
    Agbas A, Sarras Jr MP. Evidence for cell surface extracellular matrix binding proteins in Hydra vulgaris. Cell Adhes Commun 1994; 2: 59–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Johannes A. Eble

There are no affiliations available

Personalised recommendations