Skip to main content

Fracture of Structures Caused by Explosive Loading: Scale Effects

  • Chapter
High-Pressure Shock Compression of Solids VII

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

  • 517 Accesses

Abstract

The large number of existing materials and materials under development, and the variety of conditions under which they are applied, has resulted in many fracture concepts, semi-empirical theories of fracture, and fracture criteria. Each of these is reasonable for the range of parameters over which it has been investigated experimentally. These individual theories, in conjunction with previous experience in calculating the strength of structures have, for some time, proven satisfactory. However, problems have arisen because of further progress of technology in the field of unique large-sized structures intended for use under conditions of intense dynamic loads. The problem is exacerbated, in some cases, by the impossibility of performing full-scale tests to determine the actual strength reserve (safety factor) of a particular structure. Examples of unpredicted failure of some structures designed according to existing strength norms highlight the problem. Solution of these problems requires not only development of new fracture criteria, but also search for a uniform, physically justified, approach to the problem as a whole without taking into account minor details of the fracture phenomenon. As the basis of such an approach, the following fundamental achievement of the linear fracture mechanics (LFM) can be used: Fracture is a result of work done on the structure. The work required to cause a fracture is provided by the elastic energy (EE) of deformation stored in the structure. Recognition of this fact, based on Griffith’s idea regarding the condition for transition of a crack to an unstable state [1], has resulted in critical revision of fracture criteria and development of new methods for strength testing. Traditional measures of strength, namely the yield strength, σy, critical values of stress, σu (the beginning of the neck formation), strain, εu, or combinations of these quantities, appear to be insufficient. The role of characteristics of a material, such as the temporary resistance, σu, was limited by the narrow objective of comparison of materials in standard tests. The theoretical strength, from the point of view of energy criteria, appears to be 2–4 orders of magnitude less (!) than the strength of real materials [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Griffiths, Phil. Trans. Roy. Soc. A 221, pp. 163–198 (1920).

    Google Scholar 

  2. A.G. Ivanov and V.N. Mineev, Comb. ExpL Shock Waves 15(5) pp. 617–638 (1979). [trans. fromFiz. Gorenia Vzryvy 15(5) pp. 70–95 (1979).]

    Google Scholar 

  3. G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw Hill, New York, (1979).

    MATH  Google Scholar 

  4. A.G. Ivanov, Sov. Phys. —Doklady (Physics) DokL Akad. Nauk SSSR 285 (2), pp. 357–360 (1985).

    Google Scholar 

  5. A.G. Ivanov, DokL Akad. Nauk SSSR. 321 (1), pp. 28–32 (1991).

    Google Scholar 

  6. A.G.Ivanov, V.A. Raevskii, and O.S. Vorontsova, DymatJ. 2 (1), pp. 63–68 (1995).

    Google Scholar 

  7. A.G. Ivanov, in: Proc. of X Intern. Conf. Ljublana, Yugoslavia, pp. 601–611 (1989). (See also DokL Akad. Nauk SSSR. 310(4) pp. 866–870 (1990))

    Google Scholar 

  8. A.G. Ivanov, V.A Sinitsyn, and S.A. Novikov, Dokl. Akad. NaukSSSR 194 (2), pp. 316–319 (1970).

    Google Scholar 

  9. A.G. Fedorenko, V.I. Tsypkin, et al.,Mech. Comp. Mat. (1), pp. 90–94 (1983).

    Google Scholar 

  10. Adachi Khiro, in: Fracture (ed. H. Liebowitz) Vol. 5, Academic Press, New York (1968), p. 259.

    Google Scholar 

  11. G.M. Bartenev and L.K. Izmailova, DokL Akad. NaukSSSR 146, pp. 1136–1140 (1982).

    Google Scholar 

  12. V.M. Fridman, and N.I. Shcherban’, Strength ofMaterials 12(11), pp. 1451–1453 (1980). [trans. from Probl. Prochn. 12 (11), pp. 111–113 (1980).

    Google Scholar 

  13. A.G. Ivanov, A.A. Uchaev, et al., Dokl. Akad. NaukSSSR 261 (4), pp. 868–871 (1981).

    Google Scholar 

  14. V.Z. Parton and E.M. Morozov, Mechanics ofElasto Plastic Destruction, Nauka, Moscow (1985). (in Russian)

    Google Scholar 

  15. V.R. Regel, A.I. Slutsker, E.E. Tomashevskii, Kinetic nature of strength, Nauka, Moscow, (1974). (in Russian)

    Google Scholar 

  16. D.A. Shockey, L. Seaman, and D.R. Curran: Metallurgical Effects at High Strain Rates (eds. M.A. Meyers, L.E. Murr) Plenum Press, New York (1979), pp. 473–493.

    Google Scholar 

  17. V. Weiss and S. Yukawa, in: Fracture toughness testing and its applications A symposium presented at the Sixty-seventh Annual Meeting AMTM, Chicago, 1964. ASTM Special Technical Pub. No. 361.

    Google Scholar 

  18. G.P. Cherepanov, DokL Akad. NaukSSSR 272 (3), pp. 590–593 (1983).

    Google Scholar 

  19. V.Z. Parton, Mechanics ofDestruction. From Theory to Practice, Nauka, Moscow (1990).

    Google Scholar 

  20. Adachi Khiro, “Methods for designing ordnance,” in: Razrushenie, Mashinostroenie, Moscow (1977). pp. 259–342.

    Google Scholar 

  21. V.A. Ryzhanski, V.N. Mineev, et al.,Mech. of Polymers (2), pp. 283–289 (1978).

    Google Scholar 

  22. K.E. Jackson, AMA J. (8), pp. 2099–2105 (1992).

    Google Scholar 

  23. Yu.N. Tyunyaev, V.N. Mineev, and N.N. Popov, Strength ofMaterials 10(1) pp. 20–22 (1978). [trans. from Problemy Prochn. 10(1) pp. 23–26 (1978).]

    Google Scholar 

  24. A.G.Ivanov, V.N. Mineev, et al., Comb. Expl. Shock Waves 10(4) pp. 526–529 (1974). [trans. from Fiz. Gorenia Vztyvy 10(4) pp. 603–607 (1974).]

    Google Scholar 

  25. V.I. Tsypkin and A.G. Ivanov, Strength ofMaterials 13(6) pp. 794–797 (1981). [trans. from Problemy Prochn. 13(6) pp. 110–112 (1981).]

    Google Scholar 

  26. A.G. Ivanov and V.A. Ryzhanski, J. AppL Mech. Tech. Phys. 35(1) pp. 139–142 (1994). [Trans. from Zh. PrikL Mekh. Tekh. Fiz. (1) pp.135–140 (1994).]

    Google Scholar 

  27. W.E. Baker, J. Appl. Mech. 27 (1), pp. 139–144, (1960).

    Article  MathSciNet  MATH  Google Scholar 

  28. A.G.Ivanov, S.A. Novikov, and V.A. Sinitsyn, J. Appl. Mech Tech. Phys. 9(6) pp. 706–711 (1968). [trans. from PrikL Mekh. Teich. Fiz. 9(6) pp. 94–98 (1968).]

    Google Scholar 

  29. F.A. Baum, L.P. Orlenko, K.P. Stanyukovich, V.P Chelyushev, and B.I. Shekhter, Physics of Explosion, Nauka, Moscow (1975).

    Google Scholar 

  30. B.L. Averbach, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968), p. 471.

    Google Scholar 

  31. A.G. Ivanov, V.A. Sinitsyn, and S.A. Novikov, Comb. ExpL Shock Waves 8(1) pp. 101–104 (1972). [trans. from Fiz. Gorenia Vzryvy 8(1) pp. 124–129 (1972).]

    Google Scholar 

  32. A.G. Ivanov, J. Appl. Mech Tech. Phys. 35(3) pp. 430–442 (1994). [trans. from PrikL Mekh. Teich. Fiz. 35(3) pp. 116–131(1994).]

    Google Scholar 

  33. A.G. Ivanov, V.A. Ryzhanski, V.I. Tsypkin, and A.T. Shitov, Comb. ExpL Shock Waves 17(3) pp. 327–331 (1981). [trans. from Fiz Gorenia Vzryvy 15(5) pp. 102108 (1981).]

    Google Scholar 

  34. V.N. Rusak, V.A. Ryzhanski, A. G. Ivanov, and S. N. Zaikin, Comb. Expl. Shock Waves 30(4) pp. 549–556 (1994). [trans. from Fin Gorenia Vzryvy 30(4) pp. 148–156 (1994).]

    Google Scholar 

  35. [35] L.S. Lifshits, Stroit. Truboprovodov (3) pp. 18–20 (1968).

    Google Scholar 

  36. N.A. Makhutov, S.V. Serikov, and A.G. Kotousov, Strength ofMaterials 24(12) pp. 711–715 (1981). [trans. from: ProblemyProchn. 24(12) pp. 10–15 (1992).]

    Google Scholar 

  37. A.G. Ivanov, Strength ofMaterials 20(6) pp. 757–761(1988). [trans. from ProblemyProchn. 20(6) pp. 49–53 (1988).]

    Google Scholar 

  38. J.N. Goodier and I.K. Mclvor, J. AppL Mech. (2), pp. 111–119 (1964).

    Google Scholar 

  39. F.A. Baum, L.P. Orlenko, et al., Fizika vzryva., Nauka, Moscow (1975).

    Google Scholar 

  40. B.L. Averbach, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968).

    Google Scholar 

  41. J. Blum, in: Fracture (ed. H. Liebowitz) Vol. 1, Academic Press, New York (1968), p. 11.

    Google Scholar 

  42. A.G. Ivanov, L.I. Kochkin, L.V. Vasil’ev, and V.S. Kustov, Comb. Expl. Shock Waves 10(1) pp. 112–116 (1974). [trans. from Fin Gorenia Vzryvy 10(1) pp. 127132 (1974).]

    Google Scholar 

  43. F. Olive, A. Nicaud, J. Marilleau, and R. Loichot, in: Mech. Prop. High Rates Strain, Proc. 2-nd Conf., Oxford, 1979. Bristol, London (1980), pp. 242–251.

    Google Scholar 

  44. V.K. Borisevich, V.P. Sabel’kin, et al., in: Imp. ObrabotkaMetallovDavL (9), Kharkov Aviation Institute, Kharkov, (1981) pp. 75–82.

    Google Scholar 

  45. A.G. Ivanov, Strength ofMaterials 8(11) pp. 1303–1306 (1976). [trans. from ProblemyProchn. 8(11) pp. 50–52 (1976).]

    Google Scholar 

  46. W.J. Stronge, Xiaoqing Ma, and Lanting Zhao, Int. J. Mech. Sci. 31 (11/12), pp. 811–823 (1989).

    Article  Google Scholar 

  47. M. Stelly, J. Legrand, and R. Dormeval: Shock Waves and High-Strain-Rate Phenomena in Metals (eds. MA. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 113–126.

    Chapter  Google Scholar 

  48. A.G. Ivanov, J. Appl. Mech Tech. Phys. (2) pp. 295–299 (1986). [trans. from Prikl. Mekh. Tekh. Fiz. (2) pp. 146–151 (1986).]

    Google Scholar 

  49. A.G. Ivanov, V.N. Mineev, V.I. Tsypkin, L.I. Kochkin, L.V. Vasil’ev and AO.A. Kleshchevnikov, Comb. Expl. Shock Waves 10(4) pp. 526–526 (1974). [trans. from: Fiz. Gorenia Vzryvy 10(4) pp. 603–607 (1974).]

    Google Scholar 

  50. A.G. Ivanov, V.N. Mineev, and E.S. Tyunkin, Izv. Akad. Nauk SSSR Ser. Mekh. Tverd. Tela. (2), pp. 183–187 (1982).

    Google Scholar 

  51. S.S. Grigoryan, DokL Akad. Nauk SSSR 231 (1), pp. 57–60 (1976).

    ADS  Google Scholar 

  52. S.S. Grigoryan, DokL Akad. Nauk SSSR 338 (6), pp. 752–754 (1994).

    Google Scholar 

  53. V.P. Korobeinikov, V.I. Vlasov, and D.B. Volkov, Mat. Modelirovanie 6 (8), pp. 61–75 (1994).

    MathSciNet  MATH  Google Scholar 

  54. V.I. Kondaurov, I.N. Lomov, and V.E. Fortov, DokL Akad. Nauk SSSR 344 (2), pp. 184–188 (1995).

    Google Scholar 

  55. A.G. Ivanov, J. Appl. Mech Tech. Phys. 40(3) pp. 527–530 (1999). [trans. from PrikL Mekh. Tekh. Fiz. 40(3) pp. 191–195 (1999).]

    Google Scholar 

  56. A.G. Ivanov and V.A. Ryzhanski, Comb. ExpL Shock Waves 31(6), pp. 715–721 (1995). [trans. from: Fiz. Gorenia Vziyvy 31(6),pp. 117–124 (1995). See also correction: Fiz. Gorenia Vzryvy 32(3) pp. 726–733 (1996).]

    Google Scholar 

  57. A.G. Ivanov and V.A. Ryzhanski, Dokl. Akad. Nauk SSSR 353 (3), pp. 334–337 (1997).

    Google Scholar 

  58. A.G. Ivanov and V.A. Ryzhanski, Astonom. vestnik 32 (2), p. 164 (1998).

    Google Scholar 

  59. E.L. Krinov, Iron’s Rain, Nauka, Moscow (1981).

    Google Scholar 

  60. A.G. Ivanov and V.A. Ryzhanski, Comb. ExpL Shock Waves 35(3), pp. 326–330 (1999). [trans. from Fiz. Goreniya Vzryva 35(3), pp. 120–125 (1999).]

    Google Scholar 

  61. A.G. Ivanov and V.A. Ryzhanski, J. Phys. IV France 10, pp. Pr9–683—Pr9–688 (2000).

    Google Scholar 

  62. A.G. Ivanov and V.I. Tsypkin,Mech. Comp. Mat. (1), pp. 472–480 (1987).

    Google Scholar 

  63. A.G. Fedorenko, M.A.Syrunin, and A.G. Ivanov, J. Appl. Mech Tech. Phys. 34(1) pp. 123–128 (1993). [trans. from: Prikl. Mekh. Tekh. Fiz. 34(1) pp. 126–133 (1993).]

    Google Scholar 

  64. A.G. Ivanov, M.A. Syrunin, G.S. Telegin, L.M. Timonin, and A.G. Fedorenko, “Method to improve safety,” Patent RF Ns 2065222. Priority 21.04.94; Bull. Ns 22–10. 08. 96.

    Google Scholar 

  65. A.G. Ivanov, A.G. Fedorenko, and M.A. Syrunin, Comb. ExpL Shock Waves 31(2), pp. 273–274 (1995). [trans. from Fiz. Goreniya Vzryva 31(2), pp. 169–171 (1995).]

    Google Scholar 

  66. V.A. Ogorodnikov and A.G. Ivanov Comb. ExpL Shock Waves 37(1), (2001). [trans. from Fiz. Goreniya Vzryva 37(1), pp. 133–136 (2001).]

    Google Scholar 

  67. G.R. Irwin, in: Testing of high-strength metal materials for viscosity of destruction at two-dimensional strain (eds. J. Brown, J. Srawley) ASTM Tech. Publ. (1969)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ivanov, A.G. (2004). Fracture of Structures Caused by Explosive Loading: Scale Effects. In: Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I. (eds) High-Pressure Shock Compression of Solids VII. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4048-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4048-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1919-9

  • Online ISBN: 978-1-4757-4048-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics