Isentropic Compressibility and Equation of State of Hydrogen up to 1 TPa

  • V. P. Kopyshev
  • V. D. Urlin
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


Interest directed towards the equation of state of hydrogen and its isotopes comes from the fact that it is the main constituent of stars and some large planets. It is also the simplest element in nature and this makes it the preferred element in calculations of properties from first principles. Besides, at high densities hydrogen is predicted to undergo transitions from the dielectric to the metallic state and possibly to the superconducting state. Knowledge of the hydrogen equation of state (EOS) is also important in solution of the problem of thermonuclear reaction ignition. In the last 25 years great advances have been made in the technology for obtaining high pressures in diamond anvil cells. In these devices, hydrogen has been compressed to a density of p ≈ 1 g/cm3 under isothermal conditions.


Melting Curve Sound Speed Isentropic Compressibility Hydrogen Equation Weak Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.V. Grigoriev, S.B. Kormer, O.L. Mikhailova, A.P Tolochko, and V.D. Urlin, JETP Lett. 16(5) pp. 201–204 (1972). [trans. from Pis ‘ma Zh. Eksp. Teor. Fiz. 16(5) pp. 286–290 (1972).]Google Scholar
  2. [2]
    A.I. Pavlovsky, G.D. Kuleshov, G.V. Sklizkov, Yu.A. Zysin, and A.I. Gerasimov, Soy. Phys.Dokl. (Physics) 10(1),pp. 30–32 (1965). [trans. from Dokl. Akad. Nauk SSSR 160(1), pp. 68–71 (1965).] Google Scholar
  3. [3]
    F.V. Grigoriev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, Soy. Phys.-JETP 42(2), pp. 378–381 (1976). [trans. from Zh. Eksp. Teor. Fiz. 69(8), pp. 743–749 (1975).]Google Scholar
  4. [4]
    F.V. Grigoriev, S.B. Kormer, O.L. Mikhailova, A.P. Tolochko, and V.D. Urlin, Soy. Phys.-JETP 48(5), pp. 847–852 (1978). [trans. from Zh. Eksp. Teor. Fiz. 75(11), pp. 1683–1693 (1978).]Google Scholar
  5. [5]
    I.A. Adamskaya, F.V. Grigoriev, O.L. Mikhailova, M.A. Mochalov, A.I. Sokolova, and V.D. Urlin, Soy. Phys.-JETP 66(2) pp. 366–368 (1987). [trans. from Zh. Eksp. Teor. Fiz. 93(8) pp. 647–651 (1987).]Google Scholar
  6. [6]
    V.D. Urlin, M.A. Mochalov, O.L. Mikhailova, J. Exp. Theo. Phys. 84(6), pp. 1145–1148 (1997). [trans. from Zh. Eksp. Teor. Fiz. 111(6), pp. 2099–2105, (1997).]Google Scholar
  7. [7]
    V.D. Urlin, M.A. Mochalov, and O.L. Mikhailova, High Pressure Research 8, pp. 595–605, (1992).ADSCrossRefGoogle Scholar
  8. [8]
    V.D. Urlin, M.A. Mochalov, and O.L. Mikhailova, Zh. Eksp. Teor. Fiz. 38 (1), (2000).Google Scholar
  9. A. Michels, W. DeGraaff, T. Wassenaar, et al., Physica25(1), pp. 25–42 (1959). Google Scholar
  10. [10] V.D. Urlin, Soy. Phys JETP 22(2), pp. 341–346 (1966). [trans. from Zh. Eksp. Teor. Fiz. 49(2), pp. 485–493 (1965).]Google Scholar
  11. [11]
    V.P. Glushko (ed.),Thermodynamic Properties of Individual Substances,Nauka Moscow, (1978–1982). Google Scholar
  12. [12]
    A.I. Ansel’m, Introduction to Semiconductor Theory, FizMatGiz, Mosccow (1962).Google Scholar
  13. [13]
    D.S. Tziklis, V.Ya. Maslennikova, et al., Dokl. Phys. Chem. Section 220(6), p. 189 (1975). [trans. fromDokl. Akad. Nauk SSSR 220(6), pp. 1384–1386 (1975).]Google Scholar
  14. [14]
    R. Mills, D. Liebenberg, J. Bronson, and L. Schmidt, J. Chem. Phys. 66 (7), pp. 3076–3084 (1977).ADSCrossRefGoogle Scholar
  15. [15]
    D. Liebenberg, R. Mills, and J. Bronson, Phys. Rev. B 18 (8), pp. 4526–4532 (1978).ADSCrossRefGoogle Scholar
  16. [16]
    V.P. Kopyshev, J. Appl. Mech Tech. Phys. 12(1), pp. 103–107 (1971). [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 12(1), pp. 119–122 (1971).] Google Scholar
  17. [17]
    V.P. Kopyshev and V.V. Khrustalev, Zh. Prikl. Mekh. Tekh. Fiz. 1, pp. 122–128 (1971).Google Scholar
  18. [18]
    V.P.Kopyshev and A.B. Medvedev, Soy. Tech. Rev. B. Therm. Phys. 5, pp. 37–93 (1993).Google Scholar
  19. A.A. Abrikosov, Astronomical J.31(2), pp. 112–123 (1954). Google Scholar
  20. [20]
    Yu.M. Kagan, V.V. Pushkarev and A. Kholas, Soy. Phys.-JETP 46(3), pp. 511522 (1977). [trans. from Zh. Eksp. Teor. Fiz. 73(3), pp. 967–987 (1977).]Google Scholar
  21. [21]
    N.C. Holmes, M. Ross and W. Nellis, Phys. Rev. B 52, p. 15835 (1995).ADSCrossRefGoogle Scholar
  22. [22]
    M.S. Anderson and C.A. Swenson, Phys. Rev. B 10 (12), pp. 5184–5191 (1974).ADSCrossRefGoogle Scholar
  23. [23]
    H. Shimizu, E. Brody, H. Mao, and P. Bell, Phys. Rev. Lett. 47 (2), pp. 128–131 (1981).ADSCrossRefGoogle Scholar
  24. [24]
    H. Mao and R. Hemley, Rev. Mod. Phys. 66 (2), pp. 671–692 (1994).ADSCrossRefGoogle Scholar
  25. [25]
    P. Loubeyre, R. LeToullec et al., Lett. Nature 383, pp. 702–704 (1996).ADSCrossRefGoogle Scholar
  26. [26]
    V. Diatschenko, C. Chu, D. Liebenberg, et al., Phys. Rev. B 32 (1), pp. 381–389 (1985).ADSCrossRefGoogle Scholar
  27. [27]
    M. van Thiel, M. Ross, B. Hord, et al., Phys. Rev. Lett. 31 (16), pp. 979–982 (1973).ADSCrossRefGoogle Scholar
  28. [28]
    W.J. Nellis, A. Mitchell, M. van Thiel, et al., J. Chem. Phys. 79 (3), pp. 1480–1486 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • V. P. Kopyshev
  • V. D. Urlin

There are no affiliations available

Personalised recommendations